MNN/source/backend/cpu/CPUConvInt8.cpp

714 lines
32 KiB
C++

//
// CPUConvInt8.cpp
// MNN
//
// Created by MNN on 2019/5/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUConvInt8.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "backend/cpu/compute/ConvInt8_1xN.hpp"
#include "core/Concurrency.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include <math.h>
#include "compute/ConvInt83x3.hpp"
#include "compute/ConvolutionWinograd.hpp"
namespace MNN {
static void _fastIm2Col(int8_t* colAddr, const int8_t* inputOrigin,
const ConvolutionCommon::Im2ColParameter* im2colParameter, size_t xIndexStart,
size_t realDstCount) {
const int col_buffer_size = im2colParameter->kernelCountUnit * GEMM_INT8_DST_XUNIT * GEMM_INT8_SRC_UNIT * sizeof(int8_t);
::memset(colAddr, 0, col_buffer_size);
const int icDiv8 = im2colParameter->icDiv4 / 2;
const int srcZStep = im2colParameter->iw * im2colParameter->ih * 4;
inputOrigin += xIndexStart * GEMM_INT8_UNIT;
for (int i = 0; i < realDstCount; ++i) {
auto colAddrI = colAddr + GEMM_INT8_SRC_UNIT * i;
auto inputK = inputOrigin + GEMM_INT8_UNIT * i;
for (int sz = 0; sz < icDiv8; ++sz) {
auto inputZ0 = inputK + srcZStep * (2 * sz + 0);
auto inputZ1 = inputK + srcZStep * (2 * sz + 1);
const int indexOutside = sz / 2;
const int indexInsize = sz % 2;
auto dstK0 = colAddrI + (indexOutside * GEMM_INT8_DST_XUNIT * 2 + indexInsize) * (2 * GEMM_INT8_UNIT);
auto dstK1 = dstK0 + GEMM_INT8_UNIT;
*((int32_t*)dstK0) = *((int32_t*)inputZ0);
*((int32_t*)dstK1) = *((int32_t*)inputZ1);
}
}
}
static void _im2colCommonZ1(int8_t* colAddr, const int8_t* inputOrigin,
const ConvolutionCommon::Im2ColParameter* im2colParameter, size_t xIndexStart,
size_t realDstCount) {
int col_buffer_size = im2colParameter->kernelCountUnit * GEMM_INT8_DST_XUNIT * GEMM_INT8_SRC_UNIT * sizeof(int8_t);
::memset(colAddr, 0, col_buffer_size);
auto ih = im2colParameter->ih;
auto iw = im2colParameter->iw;
auto kh = im2colParameter->kernelY;
auto kw = im2colParameter->kernelX;
auto dilateX = im2colParameter->dilateX;
auto dilateY = im2colParameter->dilateY;
constexpr int dstXStepInt32 = GEMM_INT8_SRC_UNIT * GEMM_INT8_DST_XUNIT / sizeof(int32_t);
for (int i = 0; i < realDstCount; ++i) {
int xIndex = (int)xIndexStart + i;
int ox = xIndex % im2colParameter->ow;
int oy = xIndex / im2colParameter->ow;
int sx = ox * im2colParameter->strideX - im2colParameter->padX;
int sy = oy * im2colParameter->strideY - im2colParameter->padY;
int sfy = ALIMAX(0, (UP_DIV(-sy, im2colParameter->dilateY)));
int efy = ALIMIN(kh, UP_DIV(ih - sy, im2colParameter->dilateY));
int sfx = ALIMAX(0, (UP_DIV(-sx, im2colParameter->dilateX)));
int efx = ALIMIN(kw, UP_DIV(iw - sx, im2colParameter->dilateX));
int fyC = efy - sfy;
int fxC = efx - sfx;
auto colAddrI = colAddr + GEMM_INT8_SRC_UNIT * i;
auto inputOffset = inputOrigin + (sx + sfx * dilateX + (sy + sfy * dilateY) * iw) * GEMM_INT8_UNIT;
auto indexOffset = sfy * kw + sfx;
for (int fy = 0; fy < fyC; ++fy) {
for (int fx = 0; fx < fxC; ++fx) {
auto inputK = inputOffset + (fx * dilateX + fy * dilateY * iw) * GEMM_INT8_UNIT;
auto indexStart = indexOffset + fy * kw + fx;
auto indexInside = indexStart % 4;
auto indexOutside = indexStart / 4;
auto dstK0 = (int32_t*)colAddrI + indexOutside * dstXStepInt32 + indexInside;
dstK0[0] = *((int32_t*)inputK);
}
}
}
}
static void _im2colCommon(int8_t* colAddr, const int8_t* inputOrigin,
const ConvolutionCommon::Im2ColParameter* im2colParameter, size_t xIndexStart,
size_t realDstCount) {
const int col_buffer_size = im2colParameter->kernelCountUnit * GEMM_INT8_DST_XUNIT * GEMM_INT8_SRC_UNIT * sizeof(int8_t);
::memset(colAddr, 0, col_buffer_size);
auto ih = im2colParameter->ih;
auto iw = im2colParameter->iw;
auto kh = im2colParameter->kernelY;
auto kw = im2colParameter->kernelX;
auto dilateX = im2colParameter->dilateX;
auto dilateY = im2colParameter->dilateY;
auto icDiv4 = im2colParameter->icDiv4;
auto srcZStep = iw * ih * GEMM_INT8_UNIT;
constexpr int dstXStepInt32 = GEMM_INT8_SRC_UNIT * GEMM_INT8_DST_XUNIT / sizeof(int32_t);
for (int i = 0; i < realDstCount; ++i) {
int xIndex = (int)xIndexStart + i;
int ox = xIndex % im2colParameter->ow;
int oy = xIndex / im2colParameter->ow;
int sx = ox * im2colParameter->strideX - im2colParameter->padX;
int sy = oy * im2colParameter->strideY - im2colParameter->padY;
int sfy = ALIMAX(0, (UP_DIV(-sy, im2colParameter->dilateY)));
int efy = ALIMIN(kh, UP_DIV(ih - sy, im2colParameter->dilateY));
int sfx = ALIMAX(0, (UP_DIV(-sx, im2colParameter->dilateX)));
int efx = ALIMIN(kw, UP_DIV(iw - sx, im2colParameter->dilateX));
int fyC = efy - sfy;
int fxC = efx - sfx;
auto colAddrI = colAddr + GEMM_INT8_SRC_UNIT * i;
auto inputOffset = inputOrigin + (sx + sfx * dilateX + (sy + sfy * dilateY) * iw) * GEMM_INT8_UNIT;
auto indexOffset = (sfy * kw + sfx) * icDiv4;
for (int fy = 0; fy < fyC; ++fy) {
for (int fx = 0; fx < fxC; ++fx) {
auto inputK = inputOffset + (fx * dilateX + fy * dilateY * iw) * GEMM_INT8_UNIT;
auto indexStart = indexOffset + (fy * kw + fx) * icDiv4;
for (int sz = 0; sz < icDiv4; ++sz) {
const int yIndex = indexStart + sz;
const int ySubOutside = yIndex / GEMM_INT8_UNIT;
const int ySubInside = yIndex % GEMM_INT8_UNIT;
auto dstK0 = (int32_t*)colAddrI + ySubOutside * dstXStepInt32 + ySubInside;
dstK0[0] = *((int32_t*)inputK);
inputK += srcZStep;
}
}
}
}
}
CPUConvInt8::~CPUConvInt8() {
if(mWeightInt8 != nullptr){
backend()->onReleaseBuffer(mWeightInt8.get(), Backend::STATIC);
}
if(mBiasInt32 != nullptr){
backend()->onReleaseBuffer(mBiasInt32.get(), Backend::STATIC);
}
if(mScaleFloat != nullptr){
backend()->onReleaseBuffer(mScaleFloat.get(), Backend::STATIC);
}
}
CPUConvInt8::CPUConvInt8(Backend* backend, const MNN::Convolution2D* convParam, const std::vector<Tensor*>& inputs)
: CPUConvolution(convParam->common(), backend) {
const auto convCommon = convParam->common();
const auto kx = convCommon->kernelX();
const auto ky = convCommon->kernelY();
const auto kernelCount = kx * ky;
const auto srcCount = inputs[0]->channel();
const auto outputCount = convCommon->outputCount();
const auto outputCountUnit = UP_DIV(outputCount, GEMM_INT8_UNIT);
const auto srcCountUnit = UP_DIV(srcCount, GEMM_INT8_UNIT);
const auto totalKernelCountD8 = UP_DIV(srcCountUnit * kernelCount, 2);
const auto totalKernelCountD8Div2 = UP_DIV(totalKernelCountD8, 2);
// choose int8 gemm kernel
mGemmKernel = MNNGemmInt8AddBiasScale_16x4_Unit;
if(convParam->symmetricQuan()->method() == QuantizeAlgo_OVERFLOW_AWARE){
// if(true) { // debug, always be chosen
mGemmKernel = MNNGemmInt8AddBiasScale_16x4_Unit_FAST;
}
mActBits = convParam->symmetricQuan()->nbits();
mWeightInt8.reset(Tensor::createDevice<int8_t>({outputCountUnit, totalKernelCountD8Div2, GEMM_INT8_UNIT, GEMM_INT8_SRC_UNIT}));
auto allocRes = backend->onAcquireBuffer(mWeightInt8.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
const int oneTileLen = mWeightInt8->stride(1);
const int outputChnnelStride = mWeightInt8->stride(0);
const int8_t *weightSrc = nullptr;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
if (convParam->quanParameter() != nullptr) {
quanCommon = ConvolutionCommon::load(convParam->quanParameter(), false);
weightSrc = quanCommon->weight.get();
} else {
weightSrc = convParam->symmetricQuan()->weight()->data();
}
auto weightDst = mWeightInt8->host<int8_t>();
memset(weightDst, 0, mWeightInt8->size());
// reorder weight
for (int k = 0; k < kernelCount; ++k) {
const auto srcK = weightSrc + k;
for (int y = 0; y < srcCount; ++y) {
const int yOutSide = y / GEMM_INT8_UNIT;
const int yInSide = y % GEMM_INT8_UNIT;
const int yIndex = yOutSide + k * srcCountUnit;
const int ySubOutSide = yIndex / GEMM_INT8_UNIT;
const int ySubInSide = yIndex % GEMM_INT8_UNIT;
auto dstY = weightDst + ySubOutSide * oneTileLen + ySubInSide * GEMM_INT8_UNIT + yInSide;
const auto srcY = srcK + y * kernelCount;
for (int x = 0; x < outputCount; ++x) {
const int xOutSide = x / GEMM_INT8_UNIT;
const int xInSide = x % GEMM_INT8_UNIT;
const int dstIndex = xOutSide * outputChnnelStride + xInSide * GEMM_INT8_SRC_UNIT;
const int srcIndex = x * kernelCount * srcCount;
dstY[dstIndex] = srcY[srcIndex];
}
}
}
const int outputChannleUp4 = ALIGN_UP4(outputCount);
mBiasInt32.reset(Tensor::createDevice<int32_t>({outputChannleUp4}));
allocRes = backend->onAcquireBuffer(mBiasInt32.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
auto biasPtr = mBiasInt32->host<int32_t>();
memset(biasPtr, 0, outputChannleUp4 * sizeof(int32_t));
memcpy(biasPtr, convParam->symmetricQuan()->bias()->data(), outputCount * sizeof(int32_t));
mScaleFloat.reset(Tensor::createDevice<float>({outputChannleUp4}));
allocRes = backend->onAcquireBuffer(mScaleFloat.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
auto scalePtr = mScaleFloat->host<float>();
memset(scalePtr, 0, outputChannleUp4 * sizeof(float));
memcpy(scalePtr, convParam->symmetricQuan()->scale()->data(), outputCount * sizeof(float));
mIm2ColParamter.dilateX = convCommon->dilateX();
mIm2ColParamter.dilateY = convCommon->dilateY();
mIm2ColParamter.strideX = convCommon->strideX();
mIm2ColParamter.strideY = convCommon->strideY();
mIm2ColParamter.padX = convCommon->padX();
mIm2ColParamter.padY = convCommon->padY();
mIm2ColParamter.icDiv4 = srcCountUnit;
mIm2ColParamter.kernelX = convCommon->kernelX();
mIm2ColParamter.kernelY = convCommon->kernelY();
mIm2ColParamter.kernelCountUnit = totalKernelCountD8Div2;
mRelu = convCommon->relu() || convCommon->relu6();
}
ErrorCode CPUConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
CPUConvolution::onResize(inputs, outputs);
auto input = inputs[0];
auto output = outputs[0];
mIm2ColParamter.padX = mPadX;
mIm2ColParamter.padY = mPadY;
mIm2ColParamter.ih = input->height();
mIm2ColParamter.iw = input->width();
mIm2ColParamter.oh = output->height();
mIm2ColParamter.ow = output->width();
mTileCount = UP_DIV(output->height() * output->width(), GEMM_INT8_DST_XUNIT);
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
mThreadNums = std::min(threads, mTileCount);
// set im2col tensor info
mTempIm2ColBuffer.setType(DataType_DT_INT8);
mTempIm2ColBuffer.buffer().dimensions = 3;
mTempIm2ColBuffer.setLength(0, mThreadNums);
mTempIm2ColBuffer.setLength(1, GEMM_INT8_DST_XUNIT);
mTempIm2ColBuffer.setLength(2, mWeightInt8->length(1) * GEMM_INT8_SRC_UNIT);
TensorUtils::setLinearLayout(&mTempIm2ColBuffer);
// set reamin tensor info
mTempRemainBuffer.setType(DataType_DT_INT8);
mTempRemainBuffer.buffer().dimensions = 3;
mTempRemainBuffer.setLength(0, mThreadNums);
mTempRemainBuffer.setLength(1, GEMM_INT8_DST_XUNIT);
mTempRemainBuffer.setLength(2, ALIGN_UP4(output->channel()));
TensorUtils::setLinearLayout(&mTempRemainBuffer);
bool success = backend()->onAcquireBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
success = success && backend()->onAcquireBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
const int outputPlaneLen = output->height() * output->width();
const int dstZStep = outputPlaneLen * 4;
const int batch = input->batch();
const int ocDiv4 = UP_DIV(output->channel(), 4);
const auto kernelCountUnitDouble = mIm2ColParamter.kernelCountUnit;
bool fastIm2Col = mIm2ColParamter.kernelX == 1 && mIm2ColParamter.kernelY == 1 && mIm2ColParamter.icDiv4 % 2 == 0 &&
mIm2ColParamter.strideX == 1 && mIm2ColParamter.strideY == 1 && mIm2ColParamter.padX == 0 &&
mIm2ColParamter.padY == 0;
auto im2ColProcess = _im2colCommon;
if (fastIm2Col) {
im2ColProcess = _fastIm2Col;
} else if (input->channel() <= 4) {
im2ColProcess = _im2colCommonZ1;
}
//auto remain = outputPlaneLen % GEMM_INT8_DST_XUNIT;
//FUNC_PRINT(remain);
const auto inputDataPtr = input->host<int8_t>();
const auto weightDataPtr = mWeightInt8->host<int8_t>();
const auto biasDataPtr = mBiasInt32->host<int32_t>();
const auto scaleDataPtr = mScaleFloat->host<float>();
auto im2colPtr = mTempIm2ColBuffer.host<int8_t>();
auto outputDataPtr = output->host<int8_t>();
auto tempRemainPtr = mTempRemainBuffer.host<int8_t>();
QuanPostTreatParameters quanParameters;
quanParameters.scale = scaleDataPtr;
quanParameters.bias = biasDataPtr;
quanParameters.maxValue = 127;
if (mRelu) {
quanParameters.minValue = 0;
} else {
quanParameters.minValue = -128;
}
for (int bIndex = 0; bIndex < batch; ++bIndex) {
const auto srcPtr = inputDataPtr + bIndex * input->stride(0);
auto dstPtr = outputDataPtr + bIndex * output->stride(0);
auto threadFunction = [&](int tId) {
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer.stride(0);
auto gemmOutputAddr = tempRemainPtr + tId * mTempRemainBuffer.stride(0);
for (int tIndex = tId; tIndex < mTileCount; tIndex += mThreadNums) {
const int xIndexStart = tIndex * GEMM_INT8_DST_XUNIT;
const int realDstCount = ALIMIN(outputPlaneLen - xIndexStart, GEMM_INT8_DST_XUNIT);
// im2col
im2ColProcess(colAddr, srcPtr, &mIm2ColParamter, xIndexStart, realDstCount);
auto outputInTilePtr = dstPtr + xIndexStart * GEMM_INT8_UNIT;
mGemmKernel(outputInTilePtr, colAddr, weightDataPtr, kernelCountUnitDouble, dstZStep * sizeof(int8_t), ocDiv4, &quanParameters, realDstCount);
}
};
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
threadFunction((int)tId);
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
#if defined(__aarch64__) && defined(ENABLE_ARMV82)
CPUConvArm82Int8::CPUConvArm82Int8(Backend* backend, const MNN::Convolution2D* convParam)
: CPUConvolution(convParam->common(), backend) {
const auto convCommon = convParam->common();
const auto kx = convCommon->kernelX();
const auto ky = convCommon->kernelY();
const auto kernelCount = kx * ky;
const auto srcCount = convCommon->inputCount();
const auto outputCount = convCommon->outputCount();
const auto outputCountUnit = UP_DIV(outputCount, GEMM_INT8_UNIT);
const auto srcCountUnit = UP_DIV(srcCount, GEMM_INT8_UNIT);
const auto totalKernelCountUnit = srcCountUnit * kernelCount;
mWeightInt8.reset(Tensor::createDevice<int8_t>({outputCountUnit, totalKernelCountUnit, GEMM_INT8_UNIT, GEMM_INT8_UNIT}));
auto allocRes = backend->onAcquireBuffer(mWeightInt8.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
const int weightOutputChannelStride = mWeightInt8->stride(0);
const int8_t *weightSrc = nullptr;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
if (convParam->quanParameter() != nullptr) {
quanCommon = ConvolutionCommon::load(convParam->quanParameter(), false);
weightSrc = quanCommon->weight.get();
} else {
weightSrc = convParam->symmetricQuan()->weight()->data();
}
auto weightDst = mWeightInt8->host<int8_t>();
memset(weightDst, 0, mWeightInt8->size());
// reorder weight
for (int k = 0; k < kernelCount; ++k) {
const auto weightSrcK = weightSrc + k;
auto weightDstK = weightDst + k * srcCountUnit * GEMM_INT8_UNIT * GEMM_INT8_UNIT;
for (int y = 0; y < srcCount; ++y) {
const int yOutSide = y / GEMM_INT8_UNIT;
const int yInSide = y % GEMM_INT8_UNIT;
auto dstY = weightDstK + yOutSide * GEMM_INT8_UNIT * GEMM_INT8_UNIT + yInSide;
const auto srcY = weightSrcK + y * kernelCount;
for (int x = 0; x < outputCount; ++x) {
const int xOutSide = x / GEMM_INT8_UNIT;
const int xInSide = x % GEMM_INT8_UNIT;
const int dstIndex = xOutSide * weightOutputChannelStride + xInSide * GEMM_INT8_UNIT;
const int srcIndex = x * kernelCount * srcCount;
dstY[dstIndex] = srcY[srcIndex];
}
}
}
mBiasInt32.reset(Tensor::createDevice<int32_t>({outputCountUnit * GEMM_INT8_UNIT}));
allocRes = backend->onAcquireBuffer(mBiasInt32.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
auto biasPtr = mBiasInt32->host<int32_t>();
memset(biasPtr, 0, outputCountUnit * GEMM_INT8_UNIT * sizeof(int32_t));
memcpy(biasPtr, convParam->symmetricQuan()->bias()->data(), outputCount * sizeof(int32_t));
mScaleFloat.reset(Tensor::createDevice<float>({outputCountUnit * GEMM_INT8_UNIT}));
allocRes = backend->onAcquireBuffer(mScaleFloat.get(), Backend::STATIC);
if (!allocRes) {
mValid = false;
return;
}
auto scalePtr = mScaleFloat->host<float>();
memset(scalePtr, 0, outputCountUnit * GEMM_INT8_UNIT * sizeof(float));
memcpy(scalePtr, convParam->symmetricQuan()->scale()->data(), outputCount * sizeof(float));
mIm2ColParamter.dilateX = convCommon->dilateX();
mIm2ColParamter.dilateY = convCommon->dilateY();
mIm2ColParamter.strideX = convCommon->strideX();
mIm2ColParamter.strideY = convCommon->strideY();
mIm2ColParamter.padX = convCommon->padX();
mIm2ColParamter.padY = convCommon->padY();
mIm2ColParamter.icDiv4 = srcCountUnit;
mIm2ColParamter.kernelX = convCommon->kernelX();
mIm2ColParamter.kernelY = convCommon->kernelY();
mIm2ColParamter.kernelCountUnit = totalKernelCountUnit;
mRelu = convCommon->relu() || convCommon->relu6();
}
CPUConvArm82Int8::~CPUConvArm82Int8() {
if(mWeightInt8 != nullptr){
backend()->onReleaseBuffer(mWeightInt8.get(), Backend::STATIC);
}
if(mBiasInt32 != nullptr){
backend()->onReleaseBuffer(mBiasInt32.get(), Backend::STATIC);
}
if(mScaleFloat != nullptr){
backend()->onReleaseBuffer(mScaleFloat.get(), Backend::STATIC);
}
}
ErrorCode CPUConvArm82Int8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
CPUConvolution::onResize(inputs, outputs);
auto input = inputs[0];
auto output = outputs[0];
mIm2ColParamter.padX = mPadX;
mIm2ColParamter.padY = mPadY;
mIm2ColParamter.ih = input->height();
mIm2ColParamter.iw = input->width();
mIm2ColParamter.oh = output->height();
mIm2ColParamter.ow = output->width();
mTileCount = UP_DIV(output->height() * output->width(), DST_XUNIT_ARMV82);
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
mThreadNums = std::min(threads, mTileCount);
mTempIm2ColBuffer.setType(DataType_DT_INT8);
mTempIm2ColBuffer.buffer().dimensions = 3;
mTempIm2ColBuffer.setLength(0, mThreadNums);
mTempIm2ColBuffer.setLength(1, DST_XUNIT_ARMV82);
mTempIm2ColBuffer.setLength(2, mWeightInt8->length(1) * GEMM_INT8_UNIT);
TensorUtils::setLinearLayout(&mTempIm2ColBuffer);
mTempRemainBuffer.setType(DataType_DT_INT8);
mTempRemainBuffer.buffer().dimensions = 3;
mTempRemainBuffer.setLength(0, mThreadNums);
mTempRemainBuffer.setLength(1, DST_XUNIT_ARMV82);
mTempRemainBuffer.setLength(2, ALIGN_UP4(output->channel()));
TensorUtils::setLinearLayout(&mTempRemainBuffer);
bool success = backend()->onAcquireBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
success = success && backend()->onAcquireBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
return NO_ERROR;
}
static void _im2colCommonArmv82(int8_t* colAddr, const int8_t* src,
const ConvolutionCommon::Im2ColParameter* im2colParameter, size_t xIndexStart,
size_t realDstCount) {
const int colBufferSize = im2colParameter->kernelCountUnit * DST_XUNIT_ARMV82 * GEMM_INT8_UNIT * sizeof(int8_t);
memset(colAddr, 0, colBufferSize);
auto ih = im2colParameter->ih;
auto iw = im2colParameter->iw;
// auto oh = im2colParameter->oh;
auto ow = im2colParameter->ow;
auto kh = im2colParameter->kernelY;
auto kw = im2colParameter->kernelX;
auto dilateX = im2colParameter->dilateX;
auto dilateY = im2colParameter->dilateY;
auto icDiv4 = im2colParameter->icDiv4;
auto srcChannleStride = iw * ih * GEMM_INT8_UNIT;
constexpr int dstXStepInt32 = GEMM_INT8_UNIT * DST_XUNIT_ARMV82 / sizeof(int32_t);
for (int i = 0; i < realDstCount; ++i) {
int xIndex = (int)xIndexStart + i;
int ox = xIndex % ow;
int oy = xIndex / ow;
int sx = ox * im2colParameter->strideX - im2colParameter->padX;
int sy = oy * im2colParameter->strideY - im2colParameter->padY;
int sfy = ALIMAX(0, (UP_DIV(-sy, im2colParameter->dilateY)));
int efy = ALIMIN(kh, UP_DIV(ih - sy, im2colParameter->dilateY));
int sfx = ALIMAX(0, (UP_DIV(-sx, im2colParameter->dilateX)));
int efx = ALIMIN(kw, UP_DIV(iw - sx, im2colParameter->dilateX));
int fyC = efy - sfy;
int fxC = efx - sfx;
auto colAddrI = colAddr + GEMM_INT8_UNIT * i;
auto inputOffset = src + (sx + sfx * dilateX + (sy + sfy * dilateY) * iw) * GEMM_INT8_UNIT;
auto indexOffset = (sfy * kw + sfx) * icDiv4;
for (int fy = 0; fy < fyC; ++fy) {
for (int fx = 0; fx < fxC; ++fx) {
auto inputK = inputOffset + (fx * dilateX + fy * dilateY * iw) * GEMM_INT8_UNIT;
auto indexStart = (indexOffset + (fy * kw + fx) * icDiv4) * dstXStepInt32;
for (int sz = 0; sz < icDiv4; ++sz) {
auto dstK0 = (int32_t*)colAddrI + indexStart + sz * dstXStepInt32;
dstK0[0] = *((int32_t*)inputK);
inputK += srcChannleStride;
}
}
}
}
}
static void _fastIm2ColArmv82(int8_t* colAddr, const int8_t* inputOrigin,
const ConvolutionCommon::Im2ColParameter* im2colParameter, size_t xIndexStart,
size_t realDstCount) {
const int col_buffer_size = im2colParameter->kernelCountUnit * DST_XUNIT_ARMV82 * GEMM_INT8_UNIT * sizeof(int8_t);
::memset(colAddr, 0, col_buffer_size);
const int icDiv4 = im2colParameter->icDiv4;
const int srcZStep = im2colParameter->iw * im2colParameter->ih * GEMM_INT8_UNIT;
auto inputOffsetPtr = inputOrigin + xIndexStart * GEMM_INT8_UNIT;
for (int i = 0; i < realDstCount; ++i) {
auto colAddrI = colAddr + GEMM_INT8_UNIT * i;
auto inputK = inputOffsetPtr + GEMM_INT8_UNIT * i;
for (int sz = 0; sz < icDiv4; ++sz) {
auto inputZ0 = inputK + srcZStep * sz;
auto dstK0 = colAddrI + sz * GEMM_INT8_UNIT * DST_XUNIT_ARMV82;
*((int32_t*)dstK0) = *((int32_t*)inputZ0);
}
}
}
ErrorCode CPUConvArm82Int8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
const int outputPlaneLen = output->height() * output->width();
const int dstZStep = outputPlaneLen * 4;
const int batch = input->batch();
const int ocDiv4 = UP_DIV(output->channel(), 4);
const auto kernelCountUnit = mIm2ColParamter.kernelCountUnit;
const auto inputDataPtr = input->host<int8_t>();
const auto weightDataPtr = mWeightInt8->host<int8_t>();
const auto biasDataPtr = mBiasInt32->host<int32_t>();
const auto scaleDataPtr = mScaleFloat->host<float>();
auto im2colPtr = mTempIm2ColBuffer.host<int8_t>();
auto outputDataPtr = output->host<int8_t>();
auto tempRemainPtr = mTempRemainBuffer.host<int8_t>();
auto im2ColProcess = _im2colCommonArmv82;
bool useFastIm2Col = mIm2ColParamter.kernelX == 1 && mIm2ColParamter.kernelY == 1 && mIm2ColParamter.strideX == 1 &&
mIm2ColParamter.strideY == 1 && mIm2ColParamter.padX == 0 && mIm2ColParamter.padY == 0;
if (useFastIm2Col) {
im2ColProcess = _fastIm2ColArmv82;
}
QuanPostTreatParameters quanParameters;
quanParameters.scale = scaleDataPtr;
quanParameters.bias = biasDataPtr;
quanParameters.maxValue = 127;
if (mRelu) {
quanParameters.minValue = 0;
} else {
quanParameters.minValue = -128;
}
for (int bIndex = 0; bIndex < batch; ++bIndex) {
const auto srcPtr = inputDataPtr + bIndex * input->stride(0);
auto dstPtr = outputDataPtr + bIndex * output->stride(0);
auto threadFunction = [&](int tId) {
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer.stride(0);
auto gemmOutputAddr = tempRemainPtr + tId * mTempRemainBuffer.stride(0);
for (int tIndex = tId; tIndex < mTileCount; tIndex += mThreadNums) {
const int xIndexStart = tIndex * DST_XUNIT_ARMV82;
const int realDstCount = ALIMIN(outputPlaneLen - xIndexStart, DST_XUNIT_ARMV82);
// im2col
im2ColProcess(colAddr, srcPtr, &mIm2ColParamter, xIndexStart, realDstCount);
auto outputInTilePtr = dstPtr + xIndexStart * GEMM_INT8_UNIT;
if (realDstCount == DST_XUNIT_ARMV82) {
MNNGemmInt8AddBiasScale_ARMV82_Unit(outputInTilePtr, colAddr, weightDataPtr, kernelCountUnit, dstZStep * sizeof(int8_t),
ocDiv4, realDstCount, &quanParameters);
} else {
MNNGemmInt8AddBiasScale_ARMV82_Unit(gemmOutputAddr, colAddr, weightDataPtr, kernelCountUnit, GEMM_INT8_UNIT * DST_XUNIT_ARMV82 * sizeof(int8_t),
ocDiv4, realDstCount, &quanParameters);
for (int z = 0; z < ocDiv4; ++z) {
auto outputZ = outputInTilePtr + z * dstZStep;
auto srcZ = gemmOutputAddr + z * GEMM_INT8_UNIT * DST_XUNIT_ARMV82;
memcpy(outputZ, srcZ, realDstCount * GEMM_INT8_UNIT * sizeof(int8_t));
}
}
}
};
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
threadFunction((int)tId);
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
#endif
#include "compute/Int8FunctionsOpt.h"
static int _int8bestWinogradUnit(const Convolution2DCommon *common, const Tensor *inputTensor,
const Tensor *outputTensor, int threadNumber) {
int ow = outputTensor->width();
int oh = outputTensor->height();
int oc = outputTensor->channel();
int unit2 = UP_DIV(ow * oh, DST_XUNIT * threadNumber);
int maxUnit = (int)::sqrtf((float)unit2);
maxUnit = std::min(maxUnit, 6);
maxUnit = std::max(maxUnit, 2);
int ic = inputTensor->channel();
auto kernelSize = common->kernelY();
int unit = 2;
float maxRate = 0.0f;
float originCost = (float)ow * oh * (float)ic * oc * kernelSize * kernelSize;
static std::set<int> supportSu{4, 8};
for (int u = 2; u <= maxUnit; ++u) {
float su = (float)(u + kernelSize - 1);
if (supportSu.find(su) == supportSu.end()) {
continue;
}
if (nullptr == WinogradFunction::chooseDestTransform((int)su, u)) {
continue;
}
/*Let F(6,3) be choosed when it can speed up from F(2,3) than 0.6*/
float penalty = (su * su) / (float)(kernelSize * kernelSize) * 0.12f;
float winogradCost =
(2 * su * su * ic + su * su * ic * oc + 2 * su * u * oc) * (UP_DIV(ow, u) * UP_DIV(oh, u));
float reduceRate = originCost / winogradCost - penalty;
//MNN_PRINT("ic=%d, oc=%d,ow=%d, oh=%d, %f-%f, %f, winograd unit:%d\n", ic, oc, ow, oh, winogradCost, originCost, reduceRate, u);
if (reduceRate > maxRate) {
maxRate = reduceRate;
unit = u;
}
}
if (maxRate < 1.0f) {
return 0;
}
return unit;
}
class CPUConvInt8Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
#if defined(__aarch64__) && defined(ENABLE_ARMV82)
if(static_cast<CPUBackend*>(backend)->supportDot()){
return new CPUConvArm82Int8(backend, op->main_as_Convolution2D());
}
#endif
auto threadNumber = ((CPUBackend*)backend)->threadNumber();
auto conv2D = op->main_as_Convolution2D()->common();
if (1 == conv2D->strideX() && 1 == conv2D->strideY() && 1 == conv2D->dilateX() && 1 == conv2D->dilateY()) {
int actBits = op->main_as_Convolution2D()->symmetricQuan()->nbits();
int weightBits = actBits;
auto kx = conv2D->kernelX(), ky = conv2D->kernelY();
if (kx == 3 && ky == 3 && weightBits <= 6 && actBits <= 6) {
auto unit = _int8bestWinogradUnit(conv2D, inputs[0], outputs[0], threadNumber);
if (unit >= 2) {
return new ConvInt83x3(backend, op->main_as_Convolution2D(), inputs, outputs);
}
} else if (((kx == 1 && ky != 1) || (kx != 1 && ky == 1)) && weightBits <= 7 && actBits <= 7) {
return new ConvInt8_1xN(backend, op->main_as_Convolution2D());
}
}
return new CPUConvInt8(backend, op->main_as_Convolution2D(), inputs);
}
};
REGISTER_CPU_OP_CREATOR(CPUConvInt8Creator, OpType_ConvInt8);
} // namespace MNN