mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUFloatToInt8.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/5/22.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUFloatToInt8.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Concurrency.h"
 | |
| #include "backend/cpu/compute/Int8FunctionsOpt.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
 | |
|     auto scale         = param->main_as_QuantizedFloatParam();
 | |
|     const int scaleLen = scale->tensorScale()->size();
 | |
|     mClipBits = scale->nbits();
 | |
|     mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
 | |
|     mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
 | |
|     if (!mValid) {
 | |
|         return;
 | |
|     }
 | |
|     if (1 == scaleLen) {
 | |
|         mSingle = true;
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             mScales->host<float>()[i] = scale->tensorScale()->data()[0];
 | |
|         }
 | |
|     } else {
 | |
|         memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
 | |
|         memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
 | |
|     }
 | |
| }
 | |
| CPUFloatToInt8::~CPUFloatToInt8() {
 | |
|     backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
 | |
| }
 | |
| 
 | |
| ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     const auto input = inputs[0];
 | |
|     auto output      = outputs[0];
 | |
|     MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(inputs[0])->dimensionFormat);
 | |
| 
 | |
|     const auto inputDataPtr = input->host<float>();
 | |
|     auto outputDataPtr      = output->host<int8_t>();
 | |
|     const auto scaleDataPtr = mScales->host<float>();
 | |
|     const int channels      = input->channel();
 | |
|     int icDiv4        = UP_DIV(channels, 4);
 | |
|     const int batch         = input->batch();
 | |
|     const int batchStride   = input->stride(0);
 | |
|     int oc4Stride           = 1;
 | |
|     for (int i = 2; i < input->dimensions(); ++i) {
 | |
|         oc4Stride *= input->length(i);
 | |
|     }
 | |
|     if (mSingle) {
 | |
|         oc4Stride = icDiv4 * oc4Stride;
 | |
|         icDiv4 = 1;
 | |
|     }
 | |
|     int total = batch * icDiv4;
 | |
|     auto numberThread       = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
 | |
|     int maxVal = (1<<(mClipBits-1))-1, minVal = -(1<<(mClipBits-1));
 | |
|     MNN_CONCURRENCY_BEGIN(tId, total) {
 | |
|         int bIndex = tId / icDiv4;
 | |
|         int z = tId % icDiv4;
 | |
|         const auto srcChannelPtr   = inputDataPtr + tId * oc4Stride * 4;
 | |
|         const auto scaleChannelPtr = scaleDataPtr + z * 4;
 | |
|         auto dstChannlePtr         = outputDataPtr + tId * oc4Stride * 4;
 | |
|         MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, minVal, maxVal);
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUFloatToInt8Creator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         return new CPUFloatToInt8(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
 | |
| 
 | |
| } // namespace MNN
 |