mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUMatrixBandPart.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/09/17.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUMatrixBandPart.hpp"
 | |
| #include "backend/cpu/compute/ConvOpt.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #include "core/Macro.h"
 | |
| namespace MNN {
 | |
| ErrorCode CPUMatrixBandPart::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     MNN_ASSERT(3 == inputs.size());
 | |
|     auto dimensions = inputs[0]->dimensions();
 | |
|     auto height     = inputs[0]->length(dimensions - 2);
 | |
|     auto width      = inputs[0]->length(dimensions - 1);
 | |
|     mMask.reset(Tensor::createDevice<float>({1, height*width}, Tensor::CAFFE_C4));
 | |
|     auto res                                               = backend()->onAcquireBuffer(mMask.get(), Backend::DYNAMIC);
 | |
|     if (!res) {
 | |
|         return OUT_OF_MEMORY;
 | |
|     }
 | |
|     backend()->onReleaseBuffer(mMask.get(), Backend::DYNAMIC);
 | |
|     return NO_ERROR;
 | |
| }
 | |
| ErrorCode CPUMatrixBandPart::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     // Generate Mask
 | |
|     auto lower   = inputs[1]->host<int32_t>()[0];
 | |
|     auto upper   = inputs[2]->host<int32_t>()[0];
 | |
|     auto maskPtr = mMask->host<float>();
 | |
|     auto dimensions = inputs[0]->dimensions();
 | |
|     auto height     = inputs[0]->length(dimensions - 2);
 | |
|     auto width      = inputs[0]->length(dimensions - 1);
 | |
| 
 | |
|     for (int y = 0; y < height; ++y) {
 | |
|         auto maskY = maskPtr + y * width;
 | |
|         for (int x = 0; x < width; ++x) {
 | |
|             bool valid = (lower < 0 || (y - x) <= lower) && (upper < 0 || (x - y) <= upper);
 | |
|             maskY[x]   = valid ? 1.0f : 0.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Run Mul
 | |
|     auto outputPtr = outputs[0]->host<float>();
 | |
|     auto inputPtr  = inputs[0]->host<float>();
 | |
|     int outside    = 1;
 | |
|     for (int i = 0; i < inputs[0]->dimensions() - 2; ++i) {
 | |
|         outside *= inputs[0]->length(i);
 | |
|     }
 | |
|     auto inside = height * width;
 | |
|     for (int i = 0; i < outside; ++i) {
 | |
|         MNNMatrixProdCommon(outputPtr + i * inside, inputPtr + i * inside, maskPtr, inside, 0, 0, 0, 1);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUMatrixBandPartCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         return new CPUMatrixBandPart(backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUMatrixBandPartCreator, OpType_MatrixBandPart);
 | |
| } // namespace MNN
 |