mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUSoftmaxGrad.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/04/18.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUSoftmaxGrad.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "backend/cpu/compute/ConvOpt.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #include "math/Vec.hpp"
 | |
| using Vec4 = MNN::Math::Vec<float, 4>;
 | |
| namespace MNN {
 | |
| ErrorCode CPUSoftmaxGrad::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(1 == mAxis);
 | |
|     auto softmax        = inputs[0];
 | |
|     auto gradSoftmax    = inputs[1];
 | |
|     auto gradX          = outputs[0];
 | |
|     auto gradXPtr       = gradX->host<float>();
 | |
|     auto softmaxPtr     = softmax->host<float>();
 | |
|     auto gradSoftmaxPtr = gradSoftmax->host<float>();
 | |
|     auto batch          = softmax->length(0);
 | |
|     if (TensorUtils::getDescribe(gradX)->dimensionFormat == MNN_DATA_FORMAT_NHWC || TensorUtils::getDescribe(gradX)->dimensionFormat == MNN_DATA_FORMAT_NCHW) {
 | |
|         // NHWC
 | |
|         auto channel = softmax->length(1);
 | |
|         MNN_ASSERT(channel > 0);
 | |
|         for (int i = 0; i < batch; ++i) {
 | |
|             auto s0 = softmaxPtr + i * channel;
 | |
|             auto s1 = gradSoftmaxPtr + i * channel;
 | |
| 
 | |
|             auto dst   = gradXPtr + i * channel;
 | |
|             float sumV = 0.0f;
 | |
|             for (int j = 0; j < channel; ++j) {
 | |
|                 sumV = sumV + s1[j] * s0[j];
 | |
|             }
 | |
|             for (int j = 0; j < channel; ++j) {
 | |
|                 dst[j] = s0[j] * (s1[j] - sumV);
 | |
|             }
 | |
|         }
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     auto channel       = softmax->channel();
 | |
|     auto channelC4     = channel / 4;
 | |
|     auto channelAlign  = ALIGN_UP4(channel);
 | |
|     auto channelRemain = channelC4 * 4;
 | |
| 
 | |
|     for (int i = 0; i < batch; ++i) {
 | |
|         auto s0 = softmaxPtr + i * channelAlign;
 | |
|         auto s1 = gradSoftmaxPtr + i * channelAlign;
 | |
| 
 | |
|         auto dst = gradXPtr + i * channelAlign;
 | |
|         ::memset(dst, 0, channelAlign * sizeof(float));
 | |
|         Vec4 sumV(0.0f);
 | |
|         for (int j = 0; j < channelC4; ++j) {
 | |
|             sumV = sumV + Vec4::load(s1 + 4 * j) * Vec4::load(s0 + 4 * j);
 | |
|         }
 | |
|         float sum = sumV[0] + sumV[1] + sumV[2] + sumV[3];
 | |
|         for (int j = channelRemain; j < channel; ++j) {
 | |
|             sum += s1[j] * s0[j];
 | |
|         }
 | |
|         sumV = Vec4(sum);
 | |
|         for (int j = 0; j < channelC4; ++j) {
 | |
|             Vec4::save(dst + 4 * j, Vec4::load(s0 + 4 * j) * (Vec4::load(s1 + 4 * j) - sumV));
 | |
|         }
 | |
|         for (int j = channelRemain; j < channel; ++j) {
 | |
|             dst[j] = s0[j] * (s1[j] - sum);
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| class CPUSoftmaxGradCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         auto axis = op->main_as_Axis()->axis();
 | |
|         if (axis < 0) {
 | |
|             axis = inputs[0]->dimensions() + axis;
 | |
|         }
 | |
|         return new CPUSoftmaxGrad(axis, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUSoftmaxGradCreator, OpType_SoftmaxGrad);
 | |
| 
 | |
| } // namespace MNN
 |