mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			448 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUConvolutionDepthwise.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/07/20.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUConvolutionDepthwise.hpp"
 | |
| #include <string.h>
 | |
| #include "core/Concurrency.h"
 | |
| #include "backend/cpu/compute/Int8FunctionsOpt.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "backend/cpu/compute/ConvOpt.h"
 | |
| #include "backend/cpu/compute/ConvolutionDepthwise3x3.hpp"
 | |
| static const int gIntUnit = 4;
 | |
| extern "C" {
 | |
| void MNNConvRunForLineDepthWiseInt8(float* dst, const int8_t* src, const int8_t* weight, size_t width,
 | |
|                                     size_t src_w_setup, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step,
 | |
|                                     const float* alpha_z);
 | |
| }
 | |
| 
 | |
| #ifndef MNN_USE_NEON
 | |
| void MNNConvRunForLineDepthWiseInt8(float* dst, const int8_t* src, const int8_t* weight, size_t width,
 | |
|                                     size_t src_w_setup, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step,
 | |
|                                     const float* alpha_z) {
 | |
|     int dx, fx, fy;
 | |
|     for (dx = 0; dx < width; ++dx) {
 | |
|         float* dst_x  = dst + dx * 4;
 | |
|         dst_x[0]      = 0.0f;
 | |
|         dst_x[1]      = 0.0f;
 | |
|         dst_x[2]      = 0.0f;
 | |
|         dst_x[3]      = 0.0f;
 | |
|         auto src_z    = src + src_w_setup * dx;
 | |
|         auto weight_z = weight;
 | |
|         for (fy = 0; fy < fh; ++fy) {
 | |
|             auto src_y    = src_z + fy * dilateY_step;
 | |
|             auto weight_y = weight_z + fy * fw * 4;
 | |
|             for (fx = 0; fx < fw; ++fx) {
 | |
|                 auto weight_x = weight_y + 4 * fx;
 | |
|                 auto src_x    = src_y + fx * dilateX_step;
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     dst_x[j] += (float)src_x[j] * (float)weight_x[j];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             dst_x[i] *= alpha_z[i];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| CPUConvolutionDepthwise::CPUConvolutionDepthwise(const Op* op, Backend* backend) : Execution(backend) {
 | |
|     auto conv2d               = op->main_as_Convolution2D();
 | |
|     const float* originWeight = nullptr;
 | |
|     size_t originWeightSize   = 0;
 | |
|     std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
 | |
|     if (nullptr != conv2d->quanParameter()) {
 | |
|         quanCommon = ConvolutionCommon::load(conv2d->quanParameter(), false);
 | |
|         if (quanCommon->weightFloat.get() == nullptr) {
 | |
|             mSubExecution.reset(new Int8Execution(conv2d->common(), backend, quanCommon.get(), conv2d->bias()->data(),
 | |
|                                                   conv2d->bias()->size()));
 | |
|             return;
 | |
|         }
 | |
|         // Back to float
 | |
|         originWeight     = quanCommon->weightFloat.get();
 | |
|         originWeightSize = quanCommon->weightFloat.size();
 | |
|     }
 | |
|     if (nullptr == originWeight) {
 | |
|         originWeight     = conv2d->weight()->data();
 | |
|         originWeightSize = conv2d->weight()->size();
 | |
|     }
 | |
| 
 | |
|     mSubExecution.reset(new FloatExecution(conv2d->common(), backend, originWeight, originWeightSize,
 | |
|                                            conv2d->bias()->data(), conv2d->bias()->size()));
 | |
| }
 | |
| ErrorCode CPUConvolutionDepthwise::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     return mSubExecution->onResize(inputs, outputs);
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     return mSubExecution->onExecute(inputs, outputs);
 | |
| }
 | |
| 
 | |
| CPUConvolutionDepthwise::FloatExecution::FloatExecution(const Convolution2DCommon* common, Backend* b,
 | |
|                                                         const float* originWeight, size_t originWeightSize,
 | |
|                                                         const float* bias, size_t biasSize)
 | |
|     : MNN::CPUConvolution(common, b) {
 | |
|     auto layer = common;
 | |
|     mOrigin.reset(new BasicFloatExecution(common, b));
 | |
| 
 | |
|     int kw          = layer->kernelX();
 | |
|     int kh          = layer->kernelY();
 | |
|     int outputCount = (int)biasSize;
 | |
|     mBias.reset(Tensor::createDevice<float>(std::vector<int>{ALIGN_UP4(outputCount)}));
 | |
|     int depthQuad   = UP_DIV(outputCount, 4);
 | |
|     int planeStride = kw * kh * 4;
 | |
|     int kernelSize  = depthQuad * 4 * kw * kh;
 | |
|     mWeight.reset(Tensor::createDevice<float>(std::vector<int>{kernelSize}));
 | |
|     bool success =
 | |
|         b->onAcquireBuffer(mBias.get(), Backend::STATIC) && b->onAcquireBuffer(mWeight.get(), Backend::STATIC);
 | |
|     if (!success) {
 | |
|         MNN_ERROR("Error for alloc memory for CPUConvolutionDepthwise\n");
 | |
|         mValid = false;
 | |
|         return;
 | |
|     }
 | |
|     ::memset(mBias->host<float>(), 0, mBias->size());
 | |
|     ::memcpy(mBias->host<float>(), bias, biasSize * sizeof(float));
 | |
| 
 | |
|     const float* tempWeight = originWeight;
 | |
|     // Reorder weight from whc -> pwhc4
 | |
|     ::memset(mWeight->host<float>(), 0, kernelSize * sizeof(float));
 | |
|     auto weight = mWeight->host<float>();
 | |
|     MNNPackC4(weight, tempWeight, kh * kw, outputCount);
 | |
| }
 | |
| CPUConvolutionDepthwise::FloatExecution::~FloatExecution() {
 | |
|     backend()->onReleaseBuffer(mWeight.get(), Backend::STATIC);
 | |
|     backend()->onReleaseBuffer(mBias.get(), Backend::STATIC);
 | |
| }
 | |
| ErrorCode CPUConvolutionDepthwise::MultiInputFloatExecution::onResize(const std::vector<Tensor*>& inputs,
 | |
|                                                                       const std::vector<Tensor*>& outputs) {
 | |
|     auto layer = mCommon;
 | |
|     auto kw    = layer->kernelX();
 | |
|     auto kh    = layer->kernelY();
 | |
| 
 | |
|     mWeight.reset(Tensor::createDevice<float>({UP_DIV(inputs[0]->channel(), 4), kh, kw, 4}));
 | |
|     mBias.reset(Tensor::createDevice<float>({ALIGN_UP4(inputs[0]->channel())}));
 | |
|     mTempInputs = {inputs[0], mWeight.get(), mBias.get()};
 | |
|     backend()->onAcquireBuffer(mWeight.get(), Backend::DYNAMIC);
 | |
|     backend()->onAcquireBuffer(mBias.get(), Backend::DYNAMIC);
 | |
|     auto code = CPUConvolutionDepthwise::BasicFloatExecution::onResize(mTempInputs, outputs);
 | |
|     backend()->onReleaseBuffer(mWeight.get(), Backend::DYNAMIC);
 | |
|     backend()->onReleaseBuffer(mBias.get(), Backend::DYNAMIC);
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::MultiInputFloatExecution::onExecute(const std::vector<Tensor*>& inputs,
 | |
|                                                                        const std::vector<Tensor*>& outputs) {
 | |
|     auto kh = mWeight->length(1);
 | |
|     auto kw = mWeight->length(2);
 | |
|     ::memset(mBias->host<float>(), 0, mBias->size());
 | |
|     if (inputs.size() > 2) {
 | |
|         ::memcpy(mBias->host<float>(), inputs[2]->host<float>(), inputs[2]->size());
 | |
|     }
 | |
|     // Reorder weight from whc -> pwhc4
 | |
|     ::memset(mWeight->host<float>(), 0, mWeight->size());
 | |
|     auto outputCount = inputs[0]->channel();
 | |
|     auto weight      = mWeight->host<float>();
 | |
|     auto tempWeight  = inputs[1]->host<float>();
 | |
|     MNNPackC4(weight, tempWeight, kh * kw, outputCount);
 | |
|     return CPUConvolutionDepthwise::BasicFloatExecution::onExecute(mTempInputs, outputs);
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::BasicFloatExecution::onResize(const std::vector<Tensor*>& inputs,
 | |
|                                                                  const std::vector<Tensor*>& outputs) {
 | |
|     CPUConvolution::onResize(inputs, outputs);
 | |
|     auto layer         = mCommon;
 | |
|     auto inputTensor   = inputs[0];
 | |
|     auto outputTensor  = outputs[0];
 | |
|     int src_width      = inputTensor->width();
 | |
|     int src_height     = inputTensor->height();
 | |
|     int dst_width      = outputTensor->width();
 | |
|     int dst_height     = outputTensor->height();
 | |
|     int dst_depth_quad = UP_DIV(layer->outputCount(), 4);
 | |
|     int dst_z_step     = dst_width * dst_height * 4;
 | |
|     int src_z_step     = src_width * src_height * 4;
 | |
|     int dst_y_step     = dst_width * 4;
 | |
|     int src_y_step     = src_width * 4;
 | |
|     int strideY        = layer->strideY();
 | |
|     int strideX        = layer->strideX();
 | |
|     int dilateX        = layer->dilateX();
 | |
|     int dilateY        = layer->dilateY();
 | |
|     int dilateY_step   = dilateY * src_width * 4;
 | |
|     int dilateX_step   = dilateX * 4;
 | |
|     int kernel_height  = layer->kernelY();
 | |
|     int kernel_width   = layer->kernelX();
 | |
|     int padX           = mPadX;
 | |
|     int padY           = mPadY;
 | |
|     int weight_z_step  = kernel_height * kernel_width * 4;
 | |
|     // Compute Mid Rect
 | |
|     int l = 0, t = 0, r = dst_width, b = dst_height;
 | |
|     for (; l * strideX - padX < 0 && l < dst_width - 1; l++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; t * strideY - padY < 0 && t < dst_height - 1; t++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (r - 1) * strideX - padX + kernel_width * dilateX > src_width && r > l; r--) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (b - 1) * strideY - padY + kernel_height * dilateY > src_height && b > t; b--) {
 | |
|         // do nothing
 | |
|     }
 | |
| 
 | |
|     auto postFunction = getPostFunction();
 | |
|     int numberThread  = std::min(((CPUBackend*)backend())->threadNumber(), dst_depth_quad);
 | |
|     auto runBasic     = [=](float* dst_z, const float* src_z, const float* weight_dz, int L, int T, int R, int B) {
 | |
|         for (int dy = T; dy < B; ++dy) {
 | |
|             float* dst_y        = dst_z + dy * dst_y_step;
 | |
|             int srcStartY       = dy * strideY - padY;
 | |
|             const float* src_dy = src_z + srcStartY * src_y_step;
 | |
|             int sfy             = ALIMAX(0, (UP_DIV(-srcStartY, dilateY)));
 | |
|             int efy             = ALIMIN(kernel_height, UP_DIV(src_height - srcStartY, dilateY));
 | |
|             for (int dx = L; dx < R; ++dx) {
 | |
|                 float* dst_x        = dst_y + 4 * dx;
 | |
|                 int srcStartX       = dx * strideX - padX;
 | |
|                 const float* src_dx = src_dy + srcStartX * 4;
 | |
|                 int sfx             = ALIMAX(0, (UP_DIV(-srcStartX, dilateX)));
 | |
|                 int efx             = ALIMIN(kernel_width, UP_DIV(src_width - srcStartX, dilateX));
 | |
|                 MNNConvRunForUnitDepthWise(dst_x, src_dx + (sfx * dilateX + sfy * dilateY * src_width) * 4,
 | |
|                                            weight_dz + 4 * (kernel_width * sfy + sfx), efx - sfx, efy - sfy,
 | |
|                                            4 * kernel_width, dilateX_step, dilateY_step);
 | |
|             }
 | |
|         }
 | |
|     };
 | |
|     auto bias   = inputs[2];
 | |
|     auto weight = inputs[1];
 | |
|     mExecutor   = [=](const float* srcOrigin, float* dstOrigin, int tId) {
 | |
|         for (int dz = tId; dz < dst_depth_quad; dz += numberThread) {
 | |
|             float* dst_z           = dstOrigin + dst_z_step * dz;
 | |
|             const float* src_z     = srcOrigin + src_z_step * dz;
 | |
|             float* bias_z          = bias->host<float>() + 4 * dz;
 | |
|             const float* weight_dz = weight->host<float>() + dz * weight_z_step;
 | |
|             runBasic(dst_z, src_z, weight_dz, 0, 0, dst_width, t);
 | |
|             runBasic(dst_z, src_z, weight_dz, 0, b, dst_width, dst_height);
 | |
|             runBasic(dst_z, src_z, weight_dz, 0, t, l, b);
 | |
|             runBasic(dst_z, src_z, weight_dz, r, t, dst_width, b);
 | |
|             if (r > l && b > t) {
 | |
|                 MNNConvRunForLineDepthwise(dst_z + t * dst_y_step + l * 4,
 | |
|                                            src_z + (t * strideY - padY) * src_y_step + (l * strideX - padX) * 4,
 | |
|                                            weight_dz, r - l, strideX * 4, kernel_width, kernel_height, dilateX_step,
 | |
|                                            dilateY_step, b - t, src_y_step * strideY, dst_y_step);
 | |
|             }
 | |
|             postFunction(dst_z, bias_z, dst_width * dst_height, 1);
 | |
|         }
 | |
|     };
 | |
|     mNumber = numberThread;
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::BasicFloatExecution::onExecute(const std::vector<Tensor*>& inputs,
 | |
|                                                                   const std::vector<Tensor*>& outputs) {
 | |
|     auto inputTensor  = inputs[0];
 | |
|     auto outputTensor = outputs[0];
 | |
|     for (int batchIndex = 0; batchIndex < inputTensor->batch(); ++batchIndex) {
 | |
|         const float* srcOrigin = inputTensor->host<float>() + batchIndex * inputTensor->stride(0);
 | |
|         float* dstOrigin       = outputTensor->host<float>() + batchIndex * outputTensor->stride(0);
 | |
|         MNN_CONCURRENCY_BEGIN(tId, mNumber) {
 | |
|             mExecutor(srcOrigin, dstOrigin, (int)tId);
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| CPUConvolutionDepthwise::Int8Execution::Int8Execution(const Convolution2DCommon* convOp, Backend* b,
 | |
|                                                       const ConvolutionCommon::Int8Common* common,
 | |
|                                                       const float* bias, size_t biasSize)
 | |
|     : MNN::CPUConvolution(convOp, b) {
 | |
|     mQuan = common->quan;
 | |
|     MNN_ASSERT(nullptr != mQuan);
 | |
|     mBias.reset(ALIGN_UP4((int)biasSize));
 | |
|     mBias.clear();
 | |
|     ::memcpy(mBias.get(), bias, biasSize * sizeof(float));
 | |
| 
 | |
|     mAlpha.reset(ALIGN_UP4((int)biasSize));
 | |
|     mAlpha.clear();
 | |
|     ::memcpy(mAlpha.get(), common->alpha.get(), biasSize * sizeof(float));
 | |
| 
 | |
|     auto layer = mCommon;
 | |
|     int kx     = layer->kernelX();
 | |
|     int ky     = layer->kernelY();
 | |
| 
 | |
|     int outputCount = (int)biasSize;
 | |
|     int dstCountD8  = UP_DIV(outputCount, gIntUnit);
 | |
| 
 | |
|     int cur = 0;
 | |
|     mWeight.reset(dstCountD8 * gIntUnit * kx * ky);
 | |
|     mWeight.clear();
 | |
|     int8_t* reorderedWeight = mWeight.get();
 | |
|     auto originWeight       = common->weight.get();
 | |
|     for (int dz = 0; dz < outputCount; ++dz) {
 | |
|         int dzD8   = dz / gIntUnit;
 | |
|         int my     = dz % gIntUnit;
 | |
|         auto dstDz = reorderedWeight + dzD8 * kx * ky * gIntUnit;
 | |
| 
 | |
|         for (int i = 0; i < kx * ky; ++i) {
 | |
|             auto index        = i * gIntUnit;
 | |
|             dstDz[index + my] = originWeight[cur++];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::Int8Execution::onResize(const std::vector<Tensor*>& inputs,
 | |
|                                                            const std::vector<Tensor*>& outputs) {
 | |
|     auto result      = CPUConvolution::onResize(inputs, outputs);
 | |
|     auto originInput = inputs[0];
 | |
|     auto& ib         = mInputTempBuffer.buffer();
 | |
|     ib.type          = halide_type_of<int8_t>();
 | |
|     ib.dim[0].extent = UP_DIV(originInput->channel(), gIntUnit);
 | |
|     ib.dim[3].extent = gIntUnit;
 | |
|     ib.dim[1].extent = originInput->height();
 | |
|     ib.dim[2].extent = originInput->width();
 | |
|     TensorUtils::setLinearLayout(&mInputTempBuffer);
 | |
| 
 | |
|     backend()->onAcquireBuffer(&mInputTempBuffer, Backend::DYNAMIC);
 | |
|     backend()->onReleaseBuffer(&mInputTempBuffer, Backend::DYNAMIC);
 | |
| 
 | |
|     auto layer         = mCommon;
 | |
|     auto inputTensor   = inputs[0];
 | |
|     auto outputTensor  = outputs[0];
 | |
|     int src_width      = inputTensor->width();
 | |
|     int src_height     = inputTensor->height();
 | |
|     int dst_width      = outputTensor->width();
 | |
|     int dst_height     = outputTensor->height();
 | |
|     int dst_depth_quad = UP_DIV(layer->outputCount(), gIntUnit);
 | |
|     int dst_z_step     = dst_width * dst_height * gIntUnit;
 | |
|     int src_z_step     = mInputTempBuffer.buffer().dim[0].stride;
 | |
|     int dst_y_step     = dst_width * gIntUnit;
 | |
|     int src_y_step     = src_width * gIntUnit;
 | |
|     int strideY        = layer->strideY();
 | |
|     int strideX        = layer->strideX();
 | |
|     int dilateX        = layer->dilateX();
 | |
|     int dilateY        = layer->dilateY();
 | |
|     int dilateY_step   = dilateY * src_width * gIntUnit;
 | |
|     int dilateX_step   = dilateX * gIntUnit;
 | |
|     int kernel_height  = layer->kernelY();
 | |
|     int kernel_width   = layer->kernelX();
 | |
|     int padX           = mPadX;
 | |
|     int padY           = mPadY;
 | |
|     int weight_z_step  = kernel_height * kernel_width * gIntUnit;
 | |
| 
 | |
|     // Compute Mid Rect
 | |
|     int l = 0, t = 0, r = dst_width, b = dst_height;
 | |
|     for (; l * strideX - padX < 0; l++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; t * strideY - padY < 0; t++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (r - 1) * strideX - padX + kernel_width * dilateX > src_width && r > l; r--) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (b - 1) * strideY - padY + kernel_height * dilateY > src_height && b > t; b--) {
 | |
|         // do nothing
 | |
|     }
 | |
| 
 | |
|     auto postFunction = getPostFunction();
 | |
|     for (int i=0; i<4; ++i) {
 | |
|         mQuanScale[i] = mQuan->quantScale();
 | |
|     }
 | |
| 
 | |
|     auto runBasic = [=](float* dst_z, const int8_t* src_z, const int8_t* weight_dz, const float* alpha_z, int L, int T,
 | |
|                         int R, int B) {
 | |
|         for (int dy = T; dy < B; ++dy) {
 | |
|             float* dst_y  = dst_z + dy * dst_y_step;
 | |
|             int srcStartY = dy * strideY - padY;
 | |
|             auto src_dy   = src_z + srcStartY * src_y_step;
 | |
|             int sfy       = ALIMAX(0, (UP_DIV(-srcStartY, dilateY)));
 | |
|             int efy       = ALIMIN(kernel_height, UP_DIV(src_height - srcStartY, dilateY));
 | |
|             for (int dx = L; dx < R; ++dx) {
 | |
|                 float* dst_x  = dst_y + 4 * dx;
 | |
|                 int srcStartX = dx * strideX - padX;
 | |
|                 auto src_dx   = src_dy + srcStartX * 4;
 | |
|                 int sfx       = ALIMAX(0, (UP_DIV(-srcStartX, dilateX)));
 | |
|                 int efx       = ALIMIN(kernel_width, UP_DIV(src_width - srcStartX, dilateX));
 | |
|                 MNNConvRunForUnitDepthWiseInt8(dst_x, src_dx + (sfx * dilateX + sfy * dilateY * src_width) * 4,
 | |
|                                                weight_dz + 4 * (kernel_width * sfy + sfx), efx - sfx, efy - sfy,
 | |
|                                                4 * kernel_width, dilateX_step, dilateY_step, alpha_z);
 | |
|             }
 | |
|         }
 | |
|     };
 | |
|     auto aMin = mQuan->aMin();
 | |
|     auto aMax = mQuan->aMax();
 | |
|     mRun = [=]() {
 | |
|         for (int batchIndex = 0; batchIndex < inputTensor->batch(); ++batchIndex) {
 | |
|             const float* srcOrigin = inputTensor->host<float>() + batchIndex * src_z_step * dst_depth_quad;
 | |
|             float* dstOrigin       = outputTensor->host<float>() + batchIndex * dst_z_step * dst_depth_quad;
 | |
| 
 | |
|             MNN_CONCURRENCY_BEGIN(dz, dst_depth_quad) {
 | |
|                 float* dst_z_float       = dstOrigin + dst_z_step * dz;
 | |
|                 const float* src_z_float = srcOrigin + src_z_step * dz;
 | |
| 
 | |
|                 auto dst_z = dst_z_float;
 | |
|                 auto src_z = (int8_t*)mInputTempBuffer.buffer().host + dz * mInputTempBuffer.buffer().dim[0].stride;
 | |
| 
 | |
|                 MNNFloat2Int8(src_z_float, src_z, src_z_step / 4, mQuanScale, aMin, aMax);
 | |
| 
 | |
|                 const float* bias_z     = mBias.get() + gIntUnit * dz;
 | |
|                 const float* alpha_z    = mAlpha.get() + gIntUnit * dz;
 | |
|                 const int8_t* weight_dz = mWeight.get() + dz * weight_z_step;
 | |
|                 runBasic(dst_z, src_z, weight_dz, alpha_z, 0, 0, dst_width, t);
 | |
|                 runBasic(dst_z, src_z, weight_dz, alpha_z, 0, b, dst_width, dst_height);
 | |
|                 runBasic(dst_z, src_z, weight_dz, alpha_z, 0, t, l, b);
 | |
|                 runBasic(dst_z, src_z, weight_dz, alpha_z, r, t, dst_width, b);
 | |
|                 if (r > l) {
 | |
|                     for (int dy = t; dy < b; ++dy) {
 | |
|                         float* dst_y  = dst_z + dy * dst_y_step;
 | |
|                         int srcStartY = dy * strideY - padY;
 | |
|                         auto src_dy   = src_z + srcStartY * src_y_step;
 | |
|                         MNNConvRunForLineDepthWiseInt8(dst_y + l * 4, src_dy + (l * strideX - padX) * 4, weight_dz, r - l,
 | |
|                                                        strideX * 4, kernel_width, kernel_height, dilateX_step, dilateY_step,
 | |
|                                                        alpha_z);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 postFunction(dst_z_float, bias_z, dst_width * dst_height, 1);
 | |
|             }
 | |
|             MNN_CONCURRENCY_END();
 | |
|         }
 | |
|     };
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUConvolutionDepthwise::Int8Execution::onExecute(const std::vector<Tensor*>& inputs,
 | |
|                                                             const std::vector<Tensor*>& outputs) {
 | |
| 
 | |
|     mRun();
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUConvolutionDepthwiseCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         auto conv2D = op->main_as_Convolution2D();
 | |
|         auto conv   = op->main_as_Convolution2D()->common();
 | |
|         if (1 < inputs.size()) {
 | |
|             return new CPUConvolutionDepthwise::MultiInputFloatExecution(conv, backend);
 | |
|         }
 | |
|         if (conv->dilateX() == 1 && conv->dilateY() == 1 && conv->strideX() == 1 && conv->strideY() == 1 &&
 | |
|             conv->kernelX() == 3 && conv->kernelY() == 3 && conv2D->quanParameter() == nullptr) {
 | |
|             return new ConvolutionDepthwise3x3(conv, backend, conv2D->weight()->data(), conv2D->weight()->size(),
 | |
|                                                conv2D->bias()->data(), conv2D->bias()->size());
 | |
|         }
 | |
|         return new CPUConvolutionDepthwise(op, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUConvolutionDepthwiseCreator, OpType_ConvolutionDepthwise);
 | |
| } // namespace MNN
 |