mirror of https://github.com/alibaba/MNN.git
77 lines
3.1 KiB
C++
77 lines
3.1 KiB
C++
//
|
|
// CommonExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/CommonExecution.hpp"
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
CommonExecution::CommonExecution(Backend *backend, const MNN::Op *Op)
|
|
: Execution(backend), mOp(Op) {
|
|
mOpType = Op->type();
|
|
}
|
|
ErrorCode CommonExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
int idx = 0;
|
|
#else
|
|
if(runtime->isUseRecordQueue()){
|
|
if(runtime->isDevideOpRecord())
|
|
runtime->getRecordings()->emplace_back(mRecording);
|
|
return NO_ERROR;
|
|
}
|
|
#endif
|
|
auto res = CL_SUCCESS;
|
|
for (auto &unit : mUnits) {
|
|
bool lws_null = true;
|
|
for (size_t i = 0; i < unit.globalWorkSize.dimensions(); ++i) {
|
|
unit.globalWorkSize.get()[i] = ROUND_UP(unit.globalWorkSize.get()[i], std::max((size_t)1, unit.localWorkSize.get()[i]));
|
|
if(unit.localWorkSize.get()[i] != 0) {
|
|
lws_null = false;
|
|
}
|
|
}
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
if(lws_null == true) {
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel,
|
|
cl::NullRange,
|
|
unit.globalWorkSize,
|
|
cl::NullRange,
|
|
nullptr,
|
|
&event);
|
|
} else {
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel,
|
|
cl::NullRange,
|
|
unit.globalWorkSize,
|
|
unit.localWorkSize,
|
|
nullptr,
|
|
&event);
|
|
}
|
|
|
|
int costTime = (int)runtime->getCostTime(&event);
|
|
MNN_PRINT("kernel cost:%d us %s%d\n",costTime, EnumNameOpType(mOpType), idx++);
|
|
#else
|
|
if(lws_null == true) {
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel,
|
|
cl::NullRange,
|
|
unit.globalWorkSize,
|
|
cl::NullRange);
|
|
} else {
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel,
|
|
cl::NullRange,
|
|
unit.globalWorkSize,
|
|
unit.localWorkSize);
|
|
}
|
|
#endif
|
|
MNN_CHECK_CL_SUCCESS(res, EnumNameOpType(mOp->type()));
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
} // namespace OpenCL
|
|
}; // namespace MNN
|