MNN/source/backend/opencl/execution/image/ConvWinograd.cpp

422 lines
18 KiB
C++

//
// ConvWinograd.cpp
// MNN
//
// Created by MNN on 2019/01/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/ConvWinograd.hpp"
#include <string.h>
#include "core/Backend.hpp"
#include "core/ConvolutionCommon.hpp"
#include "math/WingoradGenerater.hpp"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
#define UNIT 2
#define INTERP 1
namespace MNN {
namespace OpenCL {
bool ConvWinograd::valid(const Convolution2DCommon* common, const Tensor* input, const Tensor* output, int maxWidth, int maxHeight, int limit) {
if (common->strideX() != 1 || common->strideY() != 1) {
return false;
}
if (common->dilateX() != 1 || common->dilateY() != 1) {
return false;
}
if(common->kernelX() != common->kernelY()) {
return false;
}
if(common->kernelX() != 3 && common->kernelX() != 5){
return false;
}
int ic = input->channel();
int oc = common->outputCount();
int ow = output->width();
int oh =output->height();
int kh = common->kernelX();
int wUnit = UP_DIV(ow, UNIT);
int hUnit = UP_DIV(oh, UNIT);
int alpha = kh + UNIT - 1;
int sourceWidth = UP_DIV(ic, 4) * 4 * wUnit;
int sourceHeight = alpha * alpha * hUnit;
int destWidth = alpha * alpha * wUnit * 4;
int destHeight = UP_DIV(ic, 4) * hUnit;
if(sourceWidth > maxWidth || sourceHeight > maxHeight || destWidth > maxWidth || destHeight > maxHeight){
return false;
}
if(ic >= 32 && oc >= 32){
return true;
}
return ((oc * oh * ow) / (ic * kh) <= 5);
}
ConvWinograd::ConvWinograd(const MNN::Convolution2D* op, Backend* backend) : Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend*>(backend);
mCommon = op->common();
MNN_ASSERT((3 == mCommon->kernelY() && 3 == mCommon->kernelX()) ||
(5 == mCommon->kernelX() && 5 == mCommon->kernelY()));
MNN_ASSERT(1 == mCommon->strideX() && 1 == mCommon->strideY());
MNN_ASSERT(1 == mCommon->dilateX() && 1 == mCommon->dilateY());
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int ky = mCommon->kernelY();
int kx = mCommon->kernelX();
int weightSize = 0;
const float* filterDataPtr = nullptr;
std::shared_ptr<MNN::ConvolutionCommon::Int8Common> quanCommon;
if (nullptr != op->quanParameter()) {
quanCommon = ConvolutionCommon::load(op->quanParameter(), true);
if (nullptr == quanCommon) {
MNN_ERROR("Memory not Enough, can't extract IDST Convolution \n");
}
if (quanCommon->weightFloat.get() == nullptr) {
MNN_PRINT("quanCommon->weightFloat.get() == nullptr \n");
}
// Back to float
filterDataPtr = quanCommon->weightFloat.get();
weightSize = quanCommon->weightFloat.size();
}
if (nullptr == filterDataPtr) {
weightSize = op->weight()->size();
filterDataPtr = op->weight()->data();
}
int co = mCommon->outputCount();
int ci = weightSize / co / mCommon->kernelX() / mCommon->kernelY();
auto coC4 = UP_DIV(co, 4);
auto ciC4 = UP_DIV(ci, 4);
auto queue = runTime->commandQueue();
auto imageChannelType = CL_HALF_FLOAT;
if (mOpenCLBackend->getPrecision() == BackendConfig::Precision_High) {
imageChannelType = CL_FLOAT;
}
// Create Image
{
mBias.reset(new cl::Image2D(runTime->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, imageChannelType),
UP_DIV(co, 4), 1, 0, nullptr, nullptr));
int buffer_size = ALIGN_UP4(co);
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
std::shared_ptr<cl::Buffer> biasBuffer(
new cl::Buffer(runTime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size));
cl_int error;
auto biasC = queue.enqueueMapBuffer(*biasBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(biasC != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for(int i=0; i<co; i++) {
((half_float::half*)biasC)[i] = (half_float::half)(op->bias()->data()[i]);
}
for(int i=co; i<ALIGN_UP4(co); i++) {
((half_float::half*)biasC)[i] = (half_float::half)(0.0f);
}
}else{
::memset(biasC, 0, buffer_size);
::memcpy(biasC, op->bias()->data(), co * sizeof(float));
}
}else{
MNN_ERROR("Map error biasC == nullptr \n");
}
queue.enqueueUnmapMemObject(*biasBuffer, biasC);
copyBufferToImage(runTime, *biasBuffer, *mBias, coC4, 1);
std::shared_ptr<Tensor> sourceWeight(
Tensor::create<float>(std::vector<int>{co, ci, ky, kx}, (void*)(filterDataPtr), Tensor::CAFFE));
int unit = UNIT;
int kernelSize = kx;
Math::WinogradGenerater generator(unit, kernelSize, INTERP);
int alpha = unit + kernelSize - 1;
auto weightDest = generator.allocTransformWeight(sourceWeight.get());
generator.transformWeight(weightDest.get(), sourceWeight.get());
auto weightDestSize = weightDest->size();
buffer_size = weightDest->elementSize();
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
cl::Buffer weightBuffer(runTime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
{
cl_int error;
auto weightPtr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(weightPtr != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for(int i=0; i<weightDest->elementSize(); i++) {
((half_float::half*)weightPtr)[i] = (half_float::half)(weightDest->host<float>()[i]);
}
}else{
::memcpy(weightPtr, weightDest->host<float>(), buffer_size);
}
} else{
MNN_ERROR("Map error weightPtr == nullptr \n");
}
queue.enqueueUnmapMemObject(weightBuffer, weightPtr);
}
mWeight.reset(new cl::Image2D(runTime->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, imageChannelType),
ciC4 * 4, coC4 * alpha * alpha, 0, nullptr, nullptr));
copyBufferToImage(runTime, weightBuffer, *mWeight, ciC4 * 4, coC4 * alpha * alpha);
}
}
ErrorCode ConvWinograd::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
mKernelX = mCommon->kernelX();
mKernelY = mCommon->kernelY();
mStrideX = mCommon->strideX();
mStrideY = mCommon->strideY();
mPadMode = mCommon->padMode();
int alpha = mCommon->kernelX() + UNIT - 1;
auto wUnit = UP_DIV(output->width(), UNIT);
auto hUnit = UP_DIV(output->height(), UNIT);
auto pad = ConvolutionCommon::convolutionPad(inputs[0], outputs[0], mCommon);
const int padY = pad.second;
const int padX = pad.first;
auto runTime = mOpenCLBackend->getOpenCLRuntime();
startRecord(runTime, mRecording);
auto bn = backend();
mSource.reset(Tensor::createDevice<float>(
std::vector<int>{alpha * alpha, input->channel(), hUnit, wUnit}, Tensor::CAFFE_C4));
mDest.reset(Tensor::createDevice<float>(
std::vector<int>{UP_DIV(output->channel(), 4), wUnit * 4, hUnit, alpha * alpha}, Tensor::CAFFE_C4));
bn->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
bn->onAcquireBuffer(mDest.get(), Backend::DYNAMIC);
bn->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
bn->onReleaseBuffer(mDest.get(), Backend::DYNAMIC);
auto icC4 = UP_DIV(input->channel(), 4);
auto ocC4 = UP_DIV(output->channel(), 4);
uint32_t total_num = input->batch();
mSourceTransform.resize(total_num);
mMatMul.resize(total_num);
mDestTransform.resize(total_num);
mMaxWGS_S.resize(total_num);
mMaxWGS_D.resize(total_num);
mMaxWGS_M.resize(total_num);
std::set<std::string> basic;
/*Create Kernel*/
for(int i = 0; i < input->batch(); i++) {
char format[20];
::memset(format, 0, sizeof(format));
sprintf(format, "%d_%d_%d", UNIT, mKernelX, INTERP);
auto formatStr = std::string(format);
mSourceTransform[i] =
runTime->buildKernel("winogradTransformSource" + formatStr,
"winogradTransformSource", basic);
mMaxWGS_S[i] = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mSourceTransform[i]));
{
std::set<std::string> buildOptions = basic;
if (mCommon->relu()) {
buildOptions.emplace("-DRELU");
}
if (mCommon->relu6()) {
buildOptions.emplace("-DRELU6");
}
mDestTransform[i] =
runTime->buildKernel("winogradTransformDest" + formatStr,
"winogradTransformDest", buildOptions);
mMaxWGS_D[i] = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mDestTransform[i]));
}
mMaxWGS_M[i] = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mMatMul[i]));
}
mGWS_S.resize(total_num);
mGWS_D.resize(total_num);
mGWS_M.resize(total_num);
mLWS_S.resize(total_num);
mLWS_D.resize(total_num);
mLWS_M.resize(total_num);
for (int b = 0; b < input->batch(); ++b) {
cl_int ret = CL_SUCCESS;
ret |= mSourceTransform[b].setArg(0, openCLImage(input));
ret |= mSourceTransform[b].setArg(1, openCLImage(mSource.get()));
ret |= mSourceTransform[b].setArg(2, wUnit);
ret |= mSourceTransform[b].setArg(3, hUnit);
ret |= mSourceTransform[b].setArg(4, padX);
ret |= mSourceTransform[b].setArg(5, padY);
ret |= mSourceTransform[b].setArg(6, input->width());
ret |= mSourceTransform[b].setArg(7, input->height());
ret |= mSourceTransform[b].setArg(8, icC4);
ret |= mSourceTransform[b].setArg(9, b);
ret |= mDestTransform[b].setArg(0, openCLImage(mDest.get()));
ret |= mDestTransform[b].setArg(1, *mBias);
ret |= mDestTransform[b].setArg(2, openCLImage(output));
ret |= mDestTransform[b].setArg(3, wUnit);
ret |= mDestTransform[b].setArg(4, hUnit);
ret |= mDestTransform[b].setArg(5, output->width());
ret |= mDestTransform[b].setArg(6, output->height());
ret |= mDestTransform[b].setArg(7, ocC4);
ret |= mDestTransform[b].setArg(8, b);
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvWinogradExecution");
/*Source Transform*/
{
mGWS_S[b] = {static_cast<uint32_t>(wUnit * hUnit), static_cast<uint32_t>(icC4)};
std::string kernelName = "winogradTransformSource";
mLWS_S[b] = localWS2DDefault(mGWS_S[b], mMaxWGS_S[b], mOpenCLBackend->getOpenCLRuntime(), kernelName, mSourceTransform[b]).first;
recordKernel2d(mSourceTransform[b], mGWS_S[b], mLWS_S[b], mOpenCLBackend->getOpenCLRuntime());
}
/*MatMul*/
{
const int total_kernel = 2;
const std::string kernelName[total_kernel] = {"gemmWinograd", "gemmWinogradW2"};
int itemW[total_kernel] = {4, 8};
auto gemmHeight = ocC4;
int actual_kernel = total_kernel;
cl::Kernel kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<uint32_t, int> min_cost(UINT_MAX, 0); //(min_time, min_index)
for (int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
cl_int ret = CL_SUCCESS;
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm", kernelName[knl_idx], basic);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(wUnit, itemW[knl_idx]) * hUnit), static_cast<uint32_t>(alpha * alpha * ocC4)};
ret |= kernel[knl_idx].setArg(0, openCLImage(mSource.get()));
ret |= kernel[knl_idx].setArg(1, *mWeight);
ret |= kernel[knl_idx].setArg(2, openCLImage(mDest.get()));
ret |= kernel[knl_idx].setArg(3, wUnit);
ret |= kernel[knl_idx].setArg(4, hUnit);
ret |= kernel[knl_idx].setArg(5, ocC4);
ret |= kernel[knl_idx].setArg(6, icC4);
ret |= kernel[knl_idx].setArg(7, alpha*alpha);
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvWinogradExecution gemm");
std::pair<std::vector<uint32_t>, uint32_t> retTune;
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx], kernel[knl_idx]);
// printf("gemm %d, %d\n", knl_idx, retTune.second);
if (min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLWS_M[b] = {retTune.first[0], retTune.first[1]};
}
}
cl_int ret = CL_SUCCESS;
int min_index = min_cost.second;
//printf("gemm min_index = %d %d\n", min_index, min_cost.first);
mMatMul[b] = runTime->buildKernel("gemm", kernelName[min_index], basic);
ret |= mMatMul[b].setArg(0, openCLImage(mSource.get()));
ret |= mMatMul[b].setArg(1, *mWeight);
ret |= mMatMul[b].setArg(2, openCLImage(mDest.get()));
ret |= mMatMul[b].setArg(3, wUnit);
ret |= mMatMul[b].setArg(4, hUnit);
ret |= mMatMul[b].setArg(5, ocC4);
ret |= mMatMul[b].setArg(6, icC4);
ret |= mMatMul[b].setArg(7, alpha*alpha);
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvWinogradExecution gemm");
mGWS_M[b] = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
recordKernel2d(mMatMul[b], mGWS_M[b], mLWS_M[b], mOpenCLBackend->getOpenCLRuntime());
}
// Dest Transform
{
mGWS_D[b] = {static_cast<uint32_t>(wUnit*hUnit), static_cast<uint32_t>(ocC4)};
std::string kernelName = "winogradTransformDest";
mLWS_D[b] = localWS2DDefault(mGWS_D[b], mMaxWGS_D[b], mOpenCLBackend->getOpenCLRuntime(), kernelName, mDestTransform[b]).first;
recordKernel2d(mDestTransform[b], mGWS_D[b], mLWS_D[b], mOpenCLBackend->getOpenCLRuntime());
}
}
endRecord(runTime, mRecording);
return NO_ERROR;
}
ErrorCode ConvWinograd::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
#ifdef ENABLE_OPENCL_TIME_PROFILER
int costTime = 0;
#else
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
return NO_ERROR;
}
#endif
for (int b = 0; b < input->batch(); ++b) {
/*Source Transform*/
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mSourceTransform[b], mGWS_S[b], mLWS_S[b],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime0 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime0;
MNN_PRINT("kernel cost:%d us ConvWino0\n",costTime0);
#else
runKernel2D(mSourceTransform[b], mGWS_S[b], mLWS_S[b],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
/*MatMul*/
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mMatMul[b], mGWS_M[b], mLWS_M[b],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime1 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime1;
MNN_PRINT("kernel cost:%d us ConvWino1\n",costTime1);
#else
runKernel2D(mMatMul[b], mGWS_M[b], mLWS_M[b],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
// Dest Transform
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mDestTransform[b], mGWS_D[b], mLWS_D[b],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime2 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime2;
MNN_PRINT("kernel cost:%d us ConvWino2\n",costTime2);
#else
runKernel2D(mDestTransform[b], mGWS_D[b], mLWS_D[b],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
}
#ifdef ENABLE_OPENCL_TIME_PROFILER
MNN_PRINT("kernel cost:%d us ConvWino total\n",costTime);
#endif
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN