mirror of https://github.com/alibaba/MNN.git
198 lines
7.9 KiB
C++
198 lines
7.9 KiB
C++
//
|
|
// ScaleExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/ScaleExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ScaleExecution::ScaleExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: Execution(backend) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleExecution init !\n");
|
|
#endif
|
|
auto openclBackend = (OpenCLBackend *)backend;
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
const auto *scaleParams = op->main_as_Scale();
|
|
int scaleSize = scaleParams->scaleData()->size();
|
|
const float *scaleDataPtr = scaleParams->scaleData()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(scaleSize);
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
cl::Buffer scaleBuffer(openclBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
cl_int error;
|
|
auto scalePtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
scaleBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != scalePtrCL && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for (int i = 0; i < scaleSize; i++) {
|
|
((half_float::half *)scalePtrCL)[i] = (half_float::half)(scaleDataPtr[i]);
|
|
}
|
|
for(int i=scaleSize; i<ALIGN_UP4(scaleSize); i++) {
|
|
((half_float::half*)scalePtrCL)[i] = (half_float::half)(0.0f);
|
|
}
|
|
} else {
|
|
::memset(scalePtrCL, 0, buffer_size);
|
|
::memcpy(scalePtrCL, scaleDataPtr, scaleSize * sizeof(float));
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error scalePtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(scaleBuffer, scalePtrCL);
|
|
|
|
mScale.reset(Tensor::createDevice<float>({1, 1, 1, scaleSize}));
|
|
backend->onAcquireBuffer(mScale.get(), Backend::STATIC);
|
|
copyBufferToImage(openclBackend->getOpenCLRuntime(), scaleBuffer, openCLImage(mScale.get()), UP_DIV(scaleSize, 4),
|
|
1);
|
|
|
|
std::set<std::string> buildOptions;
|
|
if (nullptr != scaleParams->biasData() && nullptr != scaleParams->biasData()->data()) {
|
|
int biasSize = scaleParams->biasData()->size();
|
|
MNN_ASSERT(biasSize == scaleSize);
|
|
const float *biasDataPtr = scaleParams->biasData()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(biasSize);
|
|
if(openclBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
cl::Buffer biasBuffer(openclBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
cl_int error;
|
|
auto biasPtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != biasPtrCL && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for (int i = 0; i < biasSize; i++) {
|
|
((half_float::half *)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
|
|
}
|
|
for(int i=biasSize; i<ALIGN_UP4(biasSize); i++) {
|
|
((half_float::half*)biasPtrCL)[i] = (half_float::half)(0.0f);
|
|
}
|
|
} else {
|
|
::memset(biasPtrCL, 0, buffer_size);
|
|
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error biasPtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
|
|
std::shared_ptr<Tensor> bias;
|
|
bias.reset(Tensor::createDevice<float>({1, 1, 1, biasSize}));
|
|
backend->onAcquireBuffer(bias.get(), Backend::STATIC);
|
|
copyBufferToImage(openclBackend->getOpenCLRuntime(), biasBuffer, openCLImage(bias.get()), UP_DIV(biasSize, 4),
|
|
1);
|
|
mBias = bias;
|
|
buildOptions.emplace("-DHAS_BIAS");
|
|
mHasBias = true;
|
|
}
|
|
std::string kernelName = "scale";
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
mKernel = runtime->buildKernel("scale", kernelName, buildOptions);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleExecution init !\n");
|
|
#endif
|
|
}
|
|
|
|
ScaleExecution::~ScaleExecution() {
|
|
if (nullptr != mBias) {
|
|
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
|
|
}
|
|
mOpenCLBackend->onReleaseBuffer(mScale.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode ScaleExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleExecution onResize !\n");
|
|
#endif
|
|
|
|
startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
|
|
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
|
|
|
|
const int batch = inputShape.at(0);
|
|
const int height = inputShape.at(1);
|
|
const int width = inputShape.at(2);
|
|
const int channels = inputShape.at(3);
|
|
|
|
const int channelBlocks = UP_DIV(channels, 4);
|
|
|
|
const std::vector<uint32_t> &gws = {static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(width),
|
|
static_cast<uint32_t>(height * batch)};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel.setArg(idx++, gws[0]);
|
|
ret |= mKernel.setArg(idx++, gws[1]);
|
|
ret |= mKernel.setArg(idx++, gws[2]);
|
|
|
|
ret |= mKernel.setArg(idx++, openCLImage(inputs[0]));
|
|
ret |= mKernel.setArg(idx++, openCLImage(mScale.get()));
|
|
if (mHasBias) {
|
|
ret |= mKernel.setArg(idx++, openCLImage(mBias.get()));
|
|
}
|
|
ret |= mKernel.setArg(idx++, openCLImage(outputs[0]));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg ScaleExecution");
|
|
|
|
std::string name = "scale";
|
|
mLWS = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, mKernel).first;
|
|
for (size_t i = 0; i < gws.size(); ++i) {
|
|
mGWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, mLWS[i]));
|
|
}
|
|
|
|
recordKernel3d(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
|
|
endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleExecution onResize !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode ScaleExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleExecution onExecute !\n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
|
|
MNN_PRINT("kernel cost:%d us Softmax\n",costTime);
|
|
#else
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
|
|
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("End ScaleExecution onExecute... \n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
run3DKernelDefault(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
OpenCLCreatorRegister<TypedCreator<ScaleExecution>> __scale_op(OpType_Scale, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|