MNN/source/backend/opencl/execution/buffer/CastBufExecution.cpp

105 lines
4.0 KiB
C++

//
// CastBufExecution.cpp
// MNN
//
// Created by MNN on 2023/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/CastBufExecution.hpp"
namespace MNN {
namespace OpenCL {
CastBufExecution::CastBufExecution(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const std::string& compute, const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
mBuildOptions.emplace(compute);
}
ErrorCode CastBufExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
std::vector<int> outputShape = tensorShapeFormat(output);
int totalSize = 0;
if(MNN::MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(output)->dimensionFormat){
totalSize = outputShape[0] * outputShape[1] * outputShape[2] * ROUND_UP(outputShape[3], 4);
}else{
totalSize = outputShape[0] * outputShape[1] * outputShape[2] * outputShape[3];
}
std::set<std::string> buildOptions = mBuildOptions;
if(totalSize % 4 != 0) {
buildOptions.emplace("-DPACK_LEAVE");
}
unit.kernel = runtime->buildKernel("cast_buf", "cast_buf", mBuildOptions, openCLBackend->getPrecision(), inputs[0], outputs[0]);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
mGlobalWorkSize = {
static_cast<uint32_t>(UP_DIV(totalSize, 4)),
static_cast<uint32_t>(1)
};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, totalSize);
MNN_CHECK_CL_SUCCESS(ret, "setArg CastBufExecution");
std::string kernelName = "cast_buf";
mLocalSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel, openCLBackend->getCLTuneLevel(), "cast_buf").first;
openCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1]};
return NO_ERROR;
}
static DataType _mapDataType(DataType src) {
if (DataType_DT_BOOL == src) {
return DataType_DT_INT32;
}
if (DataType_DT_INT64 == src) {
return DataType_DT_INT32;
}
if (DataType_DT_DOUBLE == src) {
return DataType_DT_FLOAT;
}
return src;
}
class CastBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto cast = op->main_as_CastParam();
// cast param srcT is invalid
// auto srcT = _mapDataType(cast->srcT());
auto dstT = _mapDataType(cast->dstT());
const auto &inputDataType = inputs[0]->getType();
if (inputDataType.bytes() == 4 && cast->dstT() == MNN::DataType_DT_BOOL) {
return new CastBufExecution(inputs, outputs, "-DTO_BOOL", op, backend);
} else {
return new CastBufExecution(inputs, outputs, "", op, backend);
}
return nullptr;
}
};
REGISTER_OPENCL_OP_CREATOR(CastBufCreator, OpType_Cast, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */