MNN/source/backend/opencl/execution/buffer/LayerNormBufExecution.cpp

208 lines
9.0 KiB
C++

//
// LayerNormBufExecution.cpp
// MNN
//
// Created by MNN on 2023/07/05.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/LayerNormBufExecution.hpp"
namespace MNN {
namespace OpenCL {
LayerNormBufExecution::LayerNormBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: CommonExecution(backend, op) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
const auto* layer_norm_param = op->main_as_LayerNorm();
mResource.reset(new LayernormResource);
if (nullptr != layer_norm_param->axis()) {
mResource->axis_size = layer_norm_param->axis()->size();
}
mResource->epsilon_ = layer_norm_param->epsilon();
mResource->group_ = layer_norm_param->group();
mResource->RMSNorm = layer_norm_param->useRMSNorm();
auto bufferUnitSize = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? sizeof(half_float::half) : sizeof(float);
auto kernel = runtime->buildKernel("layernorm_buf", "layernorm_buf", {"-DLOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
mResource->mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(kernel));
mResource->has_gamma_beta_ = (layer_norm_param->gamma() && layer_norm_param->beta());
int gammasize = 0;
if (mResource->has_gamma_beta_) {
MNN_ASSERT(layer_norm_param->gamma()->size() == layer_norm_param->beta()->size());
gammasize = layer_norm_param->gamma()->size();
}
mResource->has_gamma_beta_ = mResource->has_gamma_beta_ || (layer_norm_param->external() && layer_norm_param->external()->size() > 1 && layer_norm_param->external()->data()[1] > 0);
if (mResource->has_gamma_beta_ && gammasize == 0) {
gammasize = layer_norm_param->external()->data()[1] / sizeof(float);
}
if(mResource->has_gamma_beta_){
{
auto error = CL_SUCCESS;
int size = gammasize;
mResource->mGammaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto GammaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mResource->mGammaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
const float* gamma_data = layer_norm_param->gamma()->data();
if(GammaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){
for (int i = 0; i < size; i++)
{
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(gamma_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(GammaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(GammaPtrCL, gamma_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error GammaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mResource->mGammaBuffer.get(), GammaPtrCL);
}
{
auto error = CL_SUCCESS;
int size = gammasize;
mResource->mBetaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto BetaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mResource->mBetaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
const float* beta_data = layer_norm_param->beta()->data();
if(BetaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){
for (int i = 0; i < size; i++)
{
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(beta_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(BetaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(BetaPtrCL, beta_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error BetaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mResource->mBetaBuffer.get(), BetaPtrCL);
}
}
}
LayerNormBufExecution::LayerNormBufExecution(std::shared_ptr<LayernormResource> resource, const Op* op, Backend* backend): CommonExecution(backend, op) {
mResource = resource;
mOpenCLBackend = (OpenCLBackend *)backend;
}
bool LayerNormBufExecution::onClone(Backend *bn, const Op *op, Execution **dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new LayerNormBufExecution(mResource, op, bn);
return true;
}
int LayerNormBufExecution::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
ErrorCode LayerNormBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
Tensor *input = inputs[0];
Tensor *output = outputs[0];
auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mResource->mMaxWorkGroupSize), (uint32_t)256);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int rank = inputs.at(0)->dimensions();
int outter_size = 1;
int inner_size = 1;
for (int i = 0; i < rank - mResource->axis_size; ++i) {
outter_size *= inputs.at(0)->length(i);
}
for (int i = rank - mResource->axis_size; i < rank; ++i) {
inner_size *= inputs.at(0)->length(i);
}
if (mResource->group_ > 1) {
outter_size = inputs[0]->length(0) * mResource->group_;
inner_size = 1;
for (int i = 1; i < rank; i++) {
inner_size *= inputs[0]->length(i);
}
inner_size /= mResource->group_;
}
int local_size = getLocalSize(inner_size / 4, MaxLocalSize);
std::set<std::string> buildOptions;
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
if(mResource->RMSNorm){
buildOptions.emplace("-DRMSNORM");
}
if(mResource->has_gamma_beta_){
buildOptions.emplace("-DGAMMA_BETA");
}
if(inner_size % 4 != 0){
buildOptions.emplace("-DPACK_LEAVE");
}
unit.kernel = runtime->buildKernel("layernorm_buf", "layernorm_buf", buildOptions, mOpenCLBackend->getPrecision());
mGWS = {static_cast<uint32_t>(local_size), static_cast<uint32_t>(outter_size)};
mLWS = {static_cast<uint32_t>(local_size), 1};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGWS[0]);
ret |= unit.kernel->get().setArg(idx++, mGWS[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inner_size));
if(mResource->has_gamma_beta_){
ret |= unit.kernel->get().setArg(idx++, *mResource->mGammaBuffer.get());
ret |= unit.kernel->get().setArg(idx++, *mResource->mBetaBuffer.get());
}
ret |= unit.kernel->get().setArg(idx++, mResource->epsilon_);
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution");
mOpenCLBackend->recordKernel2d(unit.kernel, mGWS, mLWS);
unit.globalWorkSize = {mGWS[0], mGWS[1]};
unit.localWorkSize = {mLWS[0], mLWS[1]};
return NO_ERROR;
}
class LayerNormBufCreator : public OpenCLBackend::Creator {
public:
virtual ~LayerNormBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
const auto* layer_norm_param = op->main_as_LayerNorm();
return new LayerNormBufExecution(inputs, op, backend);
}
};
REGISTER_OPENCL_OP_CREATOR(LayerNormBufCreator, OpType_LayerNorm, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */