MNN/source/backend/opencl/execution/buffer/MatmulBufExecution.cpp

241 lines
10 KiB
C++

//
// MatmulBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/MatmulBufExecution.hpp"
namespace MNN {
namespace OpenCL {
MatMulBufExecution::MatMulBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
bool transposeA, bool transposeB) : CommonExecution(backend, op)
, mTransposeA(transposeA), mTransposeB(transposeB){
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
}
ErrorCode MatMulBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto runtime = mOpenCLBackend->getOpenCLRuntime();
Tensor *input0 = inputs[0];
Tensor *input1 = inputs[1];
Tensor *output = outputs[0];
std::vector<int> input0Shape = tensorShapeFormat(input0);
std::vector<int> input1Shape = tensorShapeFormat(input1);
std::vector<int> outputShape = tensorShapeFormat(output);
std::set<std::string> buildOptions;
int M = input0Shape[0];
int K = input0Shape[3];
if(mTransposeA) {
M = input0Shape[3];
K = input0Shape[0];
}
int N = mTransposeB ? input1Shape[0]: input1Shape[3];
const int K_4 = UP_DIV(K, 4);
const int N_4 = UP_DIV(N, 4);
const int M_4 = UP_DIV(M, 4);
// set large tile
unsigned int tileM = 128;
unsigned int tileN = 128;
unsigned int tileK = 32;
unsigned int localM = 32;
unsigned int localN = 8;
if(inputs.size() > 2) {
buildOptions.emplace("-DBIAS");
}
bool canUseTile = (M % tileM == 0) && \
(N % tileN == 0) && \
(K % tileK == 0);
bool canUseLargeTile = canUseTile && mTransposeA && !mTransposeB;
if (!canUseLargeTile) {
// set small tile
tileM = 64;
tileN = 128;
tileK = 8;
localM = 16;
localN = 16;
canUseTile = (M % tileM == 0) && (N % tileN == 0) && (K % tileK == 0);
}
if(canUseLargeTile) {
// Match with Large tileM->MWG tileN->NWG tileK->KWG localM->MDIMA localN->NDIMC
uint32_t layout = 4;
uint32_t batch = 1;
std::vector<uint32_t> param;
if(inputs.size() == 2) {
param = getGemmParams({(uint32_t)M, (uint32_t)N, (uint32_t)K, layout, batch, (uint32_t)0}, {openCLBuffer(input0), openCLBuffer(input1), openCLBuffer(output)}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
} else {
param = getGemmParams({(uint32_t)M, (uint32_t)N, (uint32_t)K, layout, batch, (uint32_t)1}, {openCLBuffer(input0), openCLBuffer(input1), openCLBuffer(output), openCLBuffer(inputs[2])}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
}
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
if(inputs.size() > 2) {
buildOptions.emplace(" -DBIAS_TYPE=1");
}
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
unit.kernel = runtime->buildKernel("matmul_params_buf", "Xgemm", buildOptions, mOpenCLBackend->getPrecision());
} else if(canUseTile) {
if(mTransposeA) {
buildOptions.emplace(" -DTRANSPOSE_A");
}
if(mTransposeB) {
buildOptions.emplace(" -DTRANSPOSE_B");
}
// Match with Small tileM->OPWM tileN->OPWN tileK->CPWK localM->OPWM/OPTM localN->OPWN/OPTN
buildOptions.emplace(" -DOPWM=64 -DOPWN=128 -DCPWK=8 -DOPTM=4 -DOPTN=8");
unit.kernel = runtime->buildKernel("matmul_local_buf", "matmul_local_buf", buildOptions, mOpenCLBackend->getPrecision());
} else {
if(mTransposeA) {
buildOptions.emplace(" -DTRANSPOSE_A");
}
if(mTransposeB) {
buildOptions.emplace(" -DTRANSPOSE_B");
}
if(M % 4 != 0) {
buildOptions.emplace(" -DM_LEAVE");
buildOptions.emplace(" -DM_LEAVE_NUM=" + std::to_string(M % 4));
}
if(N % 4 != 0) {
buildOptions.emplace(" -DN_LEAVE");
buildOptions.emplace(" -DN_LEAVE_NUM=" + std::to_string(N % 4));
}
if(K % 4 != 0) {
buildOptions.emplace(" -DK_LEAVE");
}
unit.kernel = runtime->buildKernel("matmul_buf", "matmul_buf", buildOptions, mOpenCLBackend->getPrecision());
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
cl_int ret = CL_SUCCESS;
if(canUseLargeTile) {
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGlobalWorkSize = {static_cast<uint32_t>(M/out_per_thread_m), static_cast<uint32_t>(N/out_per_thread_n)};
mLocalWorkSize = {localM, localN};
float alpha = 1.0;
float beta = 0.0f;
int offset[4] = {0, 0, 0, 0};
int stride[4] = {M, N, N, N};
int idx = 0;
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, alpha);
ret |= unit.kernel->get().setArg(idx++, beta);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if (inputs.size() > 2) {
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, offset);
ret |= unit.kernel->get().setArg(idx++, stride);
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution use large tile opt");
} else if(canUseTile) {
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGlobalWorkSize = {static_cast<uint32_t>(M/out_per_thread_m), static_cast<uint32_t>(N/out_per_thread_n)};
mLocalWorkSize = {localM, localN};
int idx = 0;
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution use tile opt");
} else {
mGlobalWorkSize = {static_cast<uint32_t>(N_4), static_cast<uint32_t>(M_4)};
int idx = 0;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution mTransposeA");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel(), "matmul_buf").first;
}
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
return NO_ERROR;
}
class MatMulBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto param = op->main_as_MatMul();
return new MatMulBufExecution(inputs, op, backend, param->transposeA(), param->transposeB());
}
};
REGISTER_OPENCL_OP_CREATOR(MatMulBufCreator, OpType_MatMul, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */