MNN/source/backend/opencl/execution/buffer/RangeBufExecution.cpp

82 lines
3.3 KiB
C++

//
// RangeBufExecution.cpp
// MNN
//
// Created by MNN on 2023/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/RangeBufExecution.hpp"
namespace MNN {
namespace OpenCL {
RangeBufExecution::RangeBufExecution(const std::string &compute, const MNN::Op *Op, Backend* backend) : CommonExecution(backend, Op) {
mBuildOptions.emplace(compute);
// Do nothing
}
ErrorCode RangeBufExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
std::vector<int> outputShape = tensorShapeFormat(outputs[0]);
int totalSize = outputShape[0] * outputShape[1] * outputShape[2] * outputShape[3];
mGlobalWorkSize = {
static_cast<uint32_t>(UP_DIV(totalSize, 4)),
static_cast<uint32_t>(1)
};
std::set<std::string> buildOption = mBuildOptions;
if((totalSize % 4) != 0){
buildOption.emplace("-DPACK_LEAVE");
}
unit.kernel = runtime->buildKernel("range_buf", "range_buf", buildOption, openCLBackend->getPrecision(), inputs[0], outputs[0]);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[0]));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(outputs[0]));
ret |= unit.kernel->get().setArg(idx++, totalSize);
MNN_CHECK_CL_SUCCESS(ret, "setArg RangeBufExecution");
std::string kernelName = "range_buf";
mLocalSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel, openCLBackend->getCLTuneLevel(), "range_buf").first;
openCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1]};
return NO_ERROR;
}
class RangeBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto code = inputs[0]->getType().code;
switch (code) {
case halide_type_int:
return new RangeBufExecution("-DUSE_INT", op, backend);
case halide_type_float:
return new RangeBufExecution("-DUSE_FLOAT", op, backend);
default:
return nullptr;
}
}
};
REGISTER_OPENCL_OP_CREATOR(RangeBufCreator, OpType_Range, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */