mirror of https://github.com/alibaba/MNN.git
580 lines
32 KiB
C++
580 lines
32 KiB
C++
//
|
|
// FmhaV2Execution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2024/06/03.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "backend/opencl/execution/buffer/SelfAttentionBufExecution.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
SelfAttentionBufImpl::SelfAttentionBufImpl(const MNN::Op *op, Backend *backend){
|
|
auto fmha_v2_param = op->main_as_FmhaV2Param();
|
|
mNumHead = fmha_v2_param->heads();
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("self_attention_buf", "softmax_inside", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
|
|
}
|
|
|
|
int SelfAttentionBufImpl::getLocalSize(int size, int maxGroupSize){
|
|
int local_size = 1;
|
|
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
|
|
local_size *= 2;
|
|
}
|
|
return local_size;
|
|
}
|
|
// [B, seqlen, HeadNum*3*HeadDim] -> [B, seqlen, HeadNum*HeadDim]
|
|
ErrorCode SelfAttentionBufImpl::onResize(Backend *backend, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
mOpenCLBackend->startRecord(mRecording);
|
|
|
|
auto input = inputs[0];// [Batch, seqLen, mNumHead * 3 * mHeadDim]
|
|
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto shape = input->shape();
|
|
|
|
int tile_mn = 32;
|
|
int tile_k = 4; // for gemm alignment
|
|
int batch = shape[0];
|
|
int seq_len = shape[1];
|
|
mHeadDim = shape[2] / mNumHead / 3;
|
|
mScale = 1.0 / sqrt(mHeadDim);
|
|
|
|
if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){
|
|
mByte = 2;
|
|
}
|
|
|
|
// split several pieces for memory save
|
|
if(seq_len > 1024) {
|
|
mQseqSplitNum = (seq_len >= 4096 && seq_len % 64 == 0) ? 8 : ((seq_len < 2048) ? 2 : 4);
|
|
}
|
|
int buffer_size = batch * mNumHead * ROUND_UP(mHeadDim, tile_k) * ROUND_UP(seq_len, tile_mn);
|
|
int buffer_qk_size = batch * mNumHead * ROUND_UP(seq_len, tile_mn) * ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
|
|
int buffer_v_size = batch * mNumHead * ROUND_UP(mHeadDim, tile_mn) * ROUND_UP(seq_len, tile_mn);
|
|
mTempQ.reset(Tensor::createDevice<float>(std::vector<int>{buffer_size / mQseqSplitNum}));
|
|
mTempK.reset(Tensor::createDevice<float>(std::vector<int>{buffer_size}));
|
|
mTempV.reset(Tensor::createDevice<float>(std::vector<int>{buffer_v_size}));
|
|
mTempQK.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
|
|
mTempTrans.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
|
|
mTempQKV.reset(Tensor::createDevice<float>(std::vector<int>{buffer_v_size / mQseqSplitNum}));
|
|
|
|
// printf("buffer size x2:%f MB, buffer qk size x3:%f MB, buffer v size x2 :%f MB\n", buffer_size * 2.0 / 1024.0 / 1024.0, buffer_qk_size * 2.0 / 1024.0 / 1024.0, buffer_v_size * 2.0 / 1024.0 / 1024.0);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC);
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempTrans.get(), Backend::DYNAMIC);
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQKV.get(), Backend::DYNAMIC);
|
|
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempTrans.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQKV.get(), Backend::DYNAMIC);
|
|
|
|
mKernel_split.resize(mQseqSplitNum);
|
|
mKernel_qk.resize(mQseqSplitNum);
|
|
mKernel_softmax.resize(mQseqSplitNum);
|
|
mKernel_qkv.resize(mQseqSplitNum);
|
|
mKernel_clip.resize(mQseqSplitNum);
|
|
mKernel_trans.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeSplit.resize(mQseqSplitNum);
|
|
mLocalWorkSizeSplit.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeClip.resize(mQseqSplitNum);
|
|
mLocalWorkSizeClip.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeQk.resize(mQseqSplitNum);
|
|
mLocalWorkSizeQk.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeSoftMax.resize(mQseqSplitNum);
|
|
mLocalWorkSizeSoftMax.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeQkv.resize(mQseqSplitNum);
|
|
mLocalWorkSizeQkv.resize(mQseqSplitNum);
|
|
mGlobalWorkSizeTrans.resize(mQseqSplitNum);
|
|
mLocalWorkSizeTrans.resize(mQseqSplitNum);
|
|
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
// Split input to q k v
|
|
{
|
|
// [Batch, seqLen, mNumHead * 3 * mHeadDim] ->
|
|
// Q : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)]
|
|
// K : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)]
|
|
// V : [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(mHeadDim, tile_mn)]
|
|
std::set<std::string> buildOption;
|
|
if((mHeadDim % 4) != 0){
|
|
buildOption.emplace("-DHEADDIM_LEAVE");
|
|
}
|
|
if((seq_len % 4) != 0){
|
|
buildOption.emplace("-DSEQLEN_LEAVE");
|
|
}
|
|
|
|
int seq_len_pack_mn = ROUND_UP(seq_len, tile_mn);
|
|
int head_dim_pack_mn = ROUND_UP(mHeadDim, tile_mn);
|
|
int head_dim_pack_k = ROUND_UP(mHeadDim, tile_k);
|
|
int seq_len_piece = seq_len_pack_mn/mQseqSplitNum;
|
|
|
|
mKernel_split[seq_idx] = runtime->buildKernel("self_attention_buf", "split_transpose_qkv", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_split[seq_idx]));
|
|
|
|
mGlobalWorkSizeSplit[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_pack_mn, 4)), static_cast<uint32_t>(UP_DIV(head_dim_pack_mn, 4)), static_cast<uint32_t>(batch*mNumHead)};
|
|
|
|
if(seq_idx > 0) {
|
|
mGlobalWorkSizeSplit[seq_idx][0] = static_cast<uint32_t>(UP_DIV(seq_len_piece, 4));
|
|
}
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][0]);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][1]);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][2]);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(input));
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempQ.get()));
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempK.get()));
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempV.get()));
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len_pack_mn);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len_piece);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, head_dim_pack_mn);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, head_dim_pack_k);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, mNumHead);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, mHeadDim);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, batch);
|
|
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_idx);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg split_transpose_qkv");
|
|
mLocalWorkSizeSplit[seq_idx] = localWS3DDefault(mGlobalWorkSizeSplit[seq_idx], maxWorkGroupSize, runtime, "split_transpose_qkv", mKernel_split[seq_idx], mOpenCLBackend->getCLTuneLevel(), "self_attention_buf").first;
|
|
mGlobalWorkSizeSplit[seq_idx][0] = ROUND_UP(mGlobalWorkSizeSplit[seq_idx][0], std::max((uint32_t)1, mLocalWorkSizeSplit[seq_idx][0]));
|
|
mGlobalWorkSizeSplit[seq_idx][1] = ROUND_UP(mGlobalWorkSizeSplit[seq_idx][1], std::max((uint32_t)1, mLocalWorkSizeSplit[seq_idx][1]));
|
|
mGlobalWorkSizeSplit[seq_idx][2] = ROUND_UP(mGlobalWorkSizeSplit[seq_idx][2], std::max((uint32_t)1, mLocalWorkSizeSplit[seq_idx][2]));
|
|
mOpenCLBackend->recordKernel3d(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx]);
|
|
}
|
|
|
|
// query * key -> div
|
|
{
|
|
// Q : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)] -> [B, K, M]
|
|
// K : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)] -> [B, K, N]
|
|
// QV: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)] -> [B, N, M]
|
|
int loop = batch * mNumHead;
|
|
int e_pack = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
|
|
int l_pack = ROUND_UP(mHeadDim, tile_k);
|
|
int h_pack = ROUND_UP(seq_len, tile_mn);
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
uint32_t layout = 4;
|
|
auto param = getGemmParams({(uint32_t)e_pack, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)0}, {openCLBuffer(mTempQ.get()), openCLBuffer(mTempK.get()), openCLBuffer(mTempQK.get())}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
|
|
|
|
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
|
|
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
|
|
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
|
|
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
|
|
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
|
|
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
|
|
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
|
|
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
|
|
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
|
|
buildOptions.emplace("-DSA=" + std::to_string(SA));
|
|
buildOptions.emplace("-DSB=" + std::to_string(SB));
|
|
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
|
|
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
|
|
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
|
|
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
|
|
if(layout >= 4) {
|
|
buildOptions.emplace("-DOUTPUTMN");
|
|
}
|
|
|
|
int tileM = MWG;
|
|
int tileN = NWG;
|
|
int localM = MDIMC;
|
|
int localN = NDIMC;
|
|
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
|
|
buildOptions.emplace("-DUSE_CL_MAD=1");
|
|
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
|
|
}
|
|
buildOptions.emplace("-DONLY_HAVE_ALPHA");
|
|
mKernel_qk[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
|
|
|
|
int out_per_thread_m = tileM / localM;
|
|
int out_per_thread_n = tileN / localN;
|
|
|
|
mGlobalWorkSizeQk[seq_idx] = {static_cast<uint32_t>(e_pack/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
|
|
mLocalWorkSizeQk[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
|
|
|
|
float alpha = mScale;
|
|
float beta = 0.0f;
|
|
int batch_offset_a = e_pack * l_pack;
|
|
int batch_offset_b = h_pack * l_pack;
|
|
int batch_offset_c = e_pack * h_pack;
|
|
|
|
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
|
|
int base_ptr_offset[4] = {0, 0, 0, 0};
|
|
|
|
int stride[4] = {e_pack, h_pack, h_pack, h_pack};
|
|
int group[4] = {1, 1, 1, loop};
|
|
int idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, alpha);
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, beta);
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQ.get()));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempK.get()));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, batch_offset);
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, base_ptr_offset);
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, stride);
|
|
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, group);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qk Kernel");
|
|
mOpenCLBackend->recordKernel3d(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx]);
|
|
|
|
}
|
|
|
|
// softmax
|
|
{
|
|
// QV: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)]
|
|
// Sotmax: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)]
|
|
// axis : 1 (middle dim)
|
|
mSoftmaxShape[0] = batch*mNumHead;
|
|
mSoftmaxShape[1] = ROUND_UP(seq_len, tile_mn)/mQseqSplitNum;
|
|
mSoftmaxShape[2] = ROUND_UP(seq_len, tile_mn);
|
|
|
|
auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize), static_cast<uint32_t>(256));
|
|
int localSize = getLocalSize(mSoftmaxShape[1], MaxLocalSize);
|
|
if(localSize < 4){
|
|
localSize = 1;
|
|
}
|
|
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
|
|
// buildOption.emplace("-DOUTPUT_TRANSPOSE");
|
|
|
|
mKernel_softmax[seq_idx] = runtime->buildKernel("self_attention_buf", "softmax_inside", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
mGlobalWorkSizeSoftMax[seq_idx] = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(mSoftmaxShape[1]), static_cast<uint32_t>(mSoftmaxShape[0])};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][0]);
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][1]);
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][2]);
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, seq_len);
|
|
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mSoftmaxShape);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention softmax");
|
|
|
|
mLocalWorkSizeSoftMax[seq_idx] = {static_cast<uint32_t>(localSize), 1, 1};
|
|
mOpenCLBackend->recordKernel3d(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx]);
|
|
}
|
|
{
|
|
int loop = batch * mNumHead;
|
|
int transDimW = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
|
|
int transDimH = ROUND_UP(seq_len, tile_mn);
|
|
|
|
std::set<std::string> buildOptions;
|
|
mKernel_trans[seq_idx] = runtime->buildKernel("self_attention_buf", "trans_3d_buf", buildOptions, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernel_trans[seq_idx]));
|
|
|
|
mGlobalWorkSizeTrans[seq_idx] = {(uint32_t)transDimW/8, (uint32_t)transDimH/8, (uint32_t)(loop)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, mGlobalWorkSizeTrans[seq_idx][0]);
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, mGlobalWorkSizeTrans[seq_idx][1]);
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, mGlobalWorkSizeTrans[seq_idx][2]);
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, openCLBuffer(mTempTrans.get()));
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, loop);
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, transDimW);
|
|
ret |= mKernel_trans[seq_idx]->get().setArg(index++, transDimH);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention transpose");
|
|
mLocalWorkSizeTrans[seq_idx] = localWS3DDefault(mGlobalWorkSizeTrans[seq_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "trans_3d_buf", mKernel_trans[seq_idx], mOpenCLBackend->getCLTuneLevel(), "self_attention_buf").first;
|
|
|
|
mGlobalWorkSizeTrans[seq_idx][0] = ROUND_UP(mGlobalWorkSizeTrans[seq_idx][0], std::max((uint32_t)1, mLocalWorkSizeTrans[seq_idx][0]));
|
|
mGlobalWorkSizeTrans[seq_idx][1] = ROUND_UP(mGlobalWorkSizeTrans[seq_idx][1], std::max((uint32_t)1, mLocalWorkSizeTrans[seq_idx][1]));
|
|
mGlobalWorkSizeTrans[seq_idx][2] = ROUND_UP(mGlobalWorkSizeTrans[seq_idx][2], std::max((uint32_t)1, mLocalWorkSizeTrans[seq_idx][2]));
|
|
|
|
mOpenCLBackend->recordKernel3d(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx]);
|
|
}
|
|
|
|
// qk * value
|
|
{
|
|
// Sotmax: [Batch * mNumHead, ROUND_UP(seqLen, tile), ROUND_UP(seqLen, tile)] -> [B, K, M]
|
|
// V : [Batch * mNumHead, ROUND_UP(seqLen, tile), ROUND_UP(mHeadDim, tile)] -> [B, K, N]
|
|
// QKV : [Batch * mNumHead, ROUND_UP(mHeadDim, tile), ROUND_UP(seqLen, tile)] -> [B, N, M]
|
|
|
|
int loop = batch * mNumHead;
|
|
int e_pack = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
|
|
int l_pack = ROUND_UP(seq_len, tile_mn);
|
|
int h_pack = ROUND_UP(mHeadDim, tile_mn);
|
|
|
|
std::set<std::string> buildOptions;
|
|
/*
|
|
0 -> A:[K, M] B:[K, N] C:[N, M]
|
|
1 -> A:[K, M] B:[N, K] C:[N, M]
|
|
2 -> A:[M, K] B:[K, N] C:[N, M]
|
|
3 -> A:[M, K] B:[N, K] C:[N, M]
|
|
4 -> A:[K, M] B:[K, N] C:[M, N]
|
|
5 -> A:[K, M] B:[N, K] C:[M, N]
|
|
6 -> A:[M, K] B:[K, N] C:[M, N]
|
|
7 -> A:[M, K] B:[N, K] C:[M, N]
|
|
*/
|
|
uint32_t layout = 0;
|
|
auto param = getGemmParams({(uint32_t)e_pack, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)0}, {openCLBuffer(mTempTrans.get()), openCLBuffer(mTempV.get()), openCLBuffer(mTempQKV.get())}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
|
|
|
|
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
|
|
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
|
|
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
|
|
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
|
|
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
|
|
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
|
|
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
|
|
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
|
|
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
|
|
buildOptions.emplace("-DSA=" + std::to_string(SA));
|
|
buildOptions.emplace("-DSB=" + std::to_string(SB));
|
|
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
|
|
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
|
|
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
|
|
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
|
|
if(layout >= 4) {
|
|
buildOptions.emplace("-DOUTPUTMN");
|
|
}
|
|
|
|
int tileM = MWG;
|
|
int tileN = NWG;
|
|
int localM = MDIMC;
|
|
int localN = NDIMC;
|
|
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
|
|
buildOptions.emplace("-DUSE_CL_MAD=1");
|
|
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
|
|
}
|
|
|
|
mKernel_qkv[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
|
|
|
|
int out_per_thread_m = tileM / localM;
|
|
int out_per_thread_n = tileN / localN;
|
|
|
|
mGlobalWorkSizeQkv[seq_idx] = {static_cast<uint32_t>(e_pack/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
|
|
mLocalWorkSizeQkv[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
|
|
|
|
float alpha = 1.0f;
|
|
float beta = 0.0f;
|
|
int batch_offset_a = e_pack * l_pack;
|
|
int batch_offset_b = h_pack * l_pack;
|
|
int batch_offset_c = e_pack * h_pack;
|
|
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
|
|
int base_ptr_offset[4] = {0, 0, 0, 0};
|
|
int stride[4] = {e_pack, h_pack, e_pack, h_pack};
|
|
int group[4] = {1, 1, 1, loop};
|
|
|
|
int idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, alpha);
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, beta);
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempTrans.get()));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempV.get()));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQKV.get()));
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, batch_offset);
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, base_ptr_offset);
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, stride);
|
|
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, group);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qkv Kernel");
|
|
mOpenCLBackend->recordKernel3d(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx]);
|
|
}
|
|
|
|
// transpose to output
|
|
{
|
|
// QKV : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_mn), ROUND_UP(seqLen, tile_mn)] -> [B, N, M]
|
|
// output: [Batch, seqLen, mNumHead * mHeadDim]
|
|
std::set<std::string> buildOption;
|
|
|
|
mKernel_clip[seq_idx] = runtime->buildKernel("self_attention_buf", "clip_transpose_qkv", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_clip[seq_idx]));
|
|
|
|
int seq_len_piece = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
|
|
|
|
mGlobalWorkSizeClip[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_piece, 4)), static_cast<uint32_t>(UP_DIV(mHeadDim, 4)), static_cast<uint32_t>(batch*mNumHead)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][0]);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][1]);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][2]);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, openCLBuffer(mTempQKV.get()));
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, tile_mn);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_len);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_len_piece);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mNumHead);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mHeadDim);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, batch);
|
|
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_idx);
|
|
|
|
mLocalWorkSizeClip[seq_idx] = localWS3DDefault(mGlobalWorkSizeClip[seq_idx], maxWorkGroupSize, runtime, "clip_transpose_qkv", mKernel_clip[seq_idx], mOpenCLBackend->getCLTuneLevel(), "self_attention_buf").first;
|
|
mGlobalWorkSizeClip[seq_idx][0] = ROUND_UP(mGlobalWorkSizeClip[seq_idx][0], std::max((uint32_t)1, mLocalWorkSizeClip[seq_idx][0]));
|
|
mGlobalWorkSizeClip[seq_idx][1] = ROUND_UP(mGlobalWorkSizeClip[seq_idx][1], std::max((uint32_t)1, mLocalWorkSizeClip[seq_idx][1]));
|
|
mGlobalWorkSizeClip[seq_idx][2] = ROUND_UP(mGlobalWorkSizeClip[seq_idx][2], std::max((uint32_t)1, mLocalWorkSizeClip[seq_idx][2]));
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg clip_transpose_qkv");
|
|
mOpenCLBackend->recordKernel3d(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx]);
|
|
}
|
|
}
|
|
mOpenCLBackend->endRecord(mRecording);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode SelfAttentionBufImpl::onExecute(Backend *backend, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start SelfAttentionBufExecution onExecute !\n");
|
|
#endif
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
int batch = inputs[0]->shape()[0];
|
|
int seqLen = inputs[0]->shape()[1];
|
|
int headDim = inputs[0]->shape()[2]/3/mNumHead;
|
|
|
|
std::string name;
|
|
name += "-b" + std::to_string(batch);
|
|
name += "-s" + std::to_string(seqLen);
|
|
name += "-h" + std::to_string(mNumHead);
|
|
name += "-d" + std::to_string(headDim);
|
|
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx],
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-split" + name, event});
|
|
}
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx],
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-batchgemm" + name, event});
|
|
}
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx],
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-softmax" + name, event});
|
|
}
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-trans-1" + name, event});
|
|
}
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx],
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-batchgemm" + name, event});
|
|
}
|
|
{
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx],
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-clip" + name, event});
|
|
}
|
|
}
|
|
#else
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
run3DKernelDefault(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
|
|
run3DKernelDefault(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
|
|
#ifdef DUMP_INTERNAL_LOG
|
|
{
|
|
std::ofstream outFile("qk.txt");
|
|
std::vector<float> hostPtr_3(16*4096*4096);
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueReadBuffer(openCLBuffer(mTempQK.get()), CL_TRUE, 0, 16*4096*4096*4, hostPtr_3.data());
|
|
float max_ = -1000000.0;
|
|
float min_ = 10000000.0;
|
|
float total = 0.0;
|
|
for(int i=1; i<hostPtr_3.size(); i++) {
|
|
float temp = hostPtr_3[i];
|
|
outFile << hostPtr_3[i] << "\n";
|
|
total += temp/(16*4096*4096);
|
|
if(max_ < temp) max_ = temp;
|
|
if(min_ > temp) min_ = temp;
|
|
}
|
|
outFile.close();
|
|
printf("qk max:%f min:%f avg:%f\n", max_, min_, hostPtr_3[0]+total);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end SelfAttentionBufExecution onExecute !\n");
|
|
#endif
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
SelfAttentionBufExecution::SelfAttentionBufExecution(const MNN::Op *op, Backend* backend) : CommonExecution(backend, op) {
|
|
mImpl.reset(new SelfAttentionBufImpl(op, backend));
|
|
}
|
|
|
|
SelfAttentionBufExecution::SelfAttentionBufExecution(std::shared_ptr<SelfAttentionBufImpl> impl, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op), mImpl(impl) {}
|
|
|
|
ErrorCode SelfAttentionBufExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
return mImpl->onResize(backend(), inputs, outputs);
|
|
}
|
|
|
|
ErrorCode SelfAttentionBufExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
return mImpl->onExecute(backend(), inputs, outputs);
|
|
}
|
|
|
|
bool SelfAttentionBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
if (nullptr == dst) {
|
|
return true;
|
|
}
|
|
*dst = new SelfAttentionBufExecution(mImpl, op, bn);
|
|
return true;
|
|
}
|
|
|
|
class SelfAttentionBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
return new SelfAttentionBufExecution(op, backend);
|
|
}
|
|
};
|
|
REGISTER_OPENCL_OP_CREATOR_TRANSFORMER(SelfAttentionBufCreator, OpType_FmhaV2, BUFFER);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif/* MNN_SUPPORT_TRANSFORMER_FUSE */
|