mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			175 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeConvolution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| class ConvolutionSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     static const Convolution2DCommon* loadCommon(const Op* op) {
 | |
|         const Convolution2DCommon* layer = nullptr;
 | |
|         if (op->main_type() == OpParameter_Convolution2D) {
 | |
|             layer = op->main_as_Convolution2D()->common();
 | |
|         } else {
 | |
|             MNN_ASSERT(op->main_type() == OpParameter_TfQuantizedConv2D);
 | |
|             layer = op->main_as_TfQuantizedConv2D()->common();
 | |
|         }
 | |
|         return layer;
 | |
|     }
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(inputs.size() >= 1);
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         const Convolution2DCommon* layer = loadCommon(op);
 | |
|         int kX = layer->kernelX();
 | |
|         int kY = layer->kernelY();
 | |
|         auto outputCount = layer->outputCount();
 | |
|         if (inputs.size() > 1 && outputCount == 0) {
 | |
|             // From TF's multi input convolution
 | |
|             outputCount = inputs[1]->length(0);
 | |
|             kX = inputs[1]->length(3);
 | |
|             kY = inputs[1]->length(2);
 | |
|         }
 | |
|         int kernel_width  = layer->dilateX() * (kX - 1) + 1;
 | |
|         int kernel_height = layer->dilateY() * (kY - 1) + 1;
 | |
| 
 | |
|         int output_width  = 1;
 | |
|         int output_height = 1;
 | |
| 
 | |
|         auto input = inputs[0];
 | |
|         if (input->dimensions() <= 1) {
 | |
|             // Convolution is not valid for dimension <= 1
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         auto inputCount = layer->inputCount();
 | |
|         bool depthwiseMatch =
 | |
|             inputCount == layer->outputCount() &&
 | |
|             inputCount == layer->group() &&
 | |
|             inputCount == input->channel();
 | |
|         int commonChannelMatch =
 | |
|             inputCount == inputs[0]->channel() ||            // real relationship in in express
 | |
|             (inputCount * layer->group() == input->channel()); // standard definition of group convolution
 | |
|         bool valid = inputCount == 0 || depthwiseMatch || commonChannelMatch;
 | |
| 
 | |
|         // For Tensorflow Group Convolution, the inputCount is the size of filter's input count
 | |
|         if (inputs.size() == 1 && !valid && OpType_Convolution == op->type()) {
 | |
|             MNN_ERROR(
 | |
|                 "Error for compute convolution shape, inputCount:%d, group:%d, inputChannel: %d, batch:%d, width:%d, height:%d. "
 | |
|                 "Input data channel may be mismatch with filter channel count\n",
 | |
|                 layer->inputCount(), layer->group(), input->channel(), input->batch(), input->width(), input->height());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (layer->padMode() == PadMode_SAME) {
 | |
|             // Tensorflow padding mode SAME
 | |
|             output_width  = ceil((float)input->width() / (float)layer->strideX());
 | |
|             output_height = ceil((float)input->height() / (float)layer->strideY());
 | |
|         } else if (layer->padMode() == PadMode_VALID) {
 | |
|             // Tensorflow padding mode VALID
 | |
|             output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | |
|             output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | |
|         } else {
 | |
|             // Pad_Caffe means User setted padding
 | |
|             if (nullptr != layer->pads()) {
 | |
|                 MNN_ASSERT(layer->pads()->size() >= 4);
 | |
|                 int input_width  = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];
 | |
|                 int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];
 | |
|                 output_width     = input_width < kernel_width ? 0 : (input_width - kernel_width) / layer->strideX() + 1;
 | |
|                 output_height    = input_height < kernel_height ? 0 : (input_height - kernel_height) / layer->strideY() + 1;
 | |
|             } else {
 | |
|                 int input_width  = input->width() + layer->padX() * 2;
 | |
|                 int input_height = input->height() + layer->padY() * 2;
 | |
|                 output_width     = (input_width - kernel_width) / layer->strideX() + 1;
 | |
|                 output_height    = (input_height - kernel_height) / layer->strideY() + 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         auto& outputBuffer         = outputs[0]->buffer();
 | |
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | |
|         auto format = TensorUtils::getDescribe(input)->dimensionFormat;
 | |
|         outputBuffer.type = input->getType();
 | |
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | |
|         if (MNN_DATA_FORMAT_NHWC == format) {
 | |
|             outputBuffer.dim[3].extent = outputCount;
 | |
|             outputBuffer.dim[1].extent = output_height;
 | |
|             outputBuffer.dim[2].extent = output_width;
 | |
|         } else {
 | |
|             outputBuffer.dim[1].extent = outputCount;
 | |
|             outputBuffer.dim[2].extent = output_height;
 | |
|             outputBuffer.dim[3].extent = output_width;
 | |
|         }
 | |
|         // MNN_PRINT("outputs: %d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         const Convolution2DCommon* layer = loadCommon(op);
 | |
|         auto kw    = layer->kernelX();
 | |
|         auto kh    = layer->kernelY();
 | |
|         auto group = layer->group();
 | |
|         auto ic    = inputs[0]->channel();
 | |
|         auto oc    = outputs[0]->channel();
 | |
|         auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
 | |
|         if (op->type() == OpType_QuantizedDepthwiseConv2D) {
 | |
|             group = ic;
 | |
|         }
 | |
|         if (layer->inputCount() != ic && layer->inputCount() > 0) {
 | |
|             group = ic / layer->inputCount();
 | |
|         }
 | |
|         auto flops = (float)oSize * kw * kh * (ic * oc / (group == 0 ? 1 : group)) / FLOPS_M;
 | |
|         return flops;
 | |
|     }
 | |
| };
 | |
| 
 | |
| class Dilation2DSizeComputer : public ConvolutionSizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
 | |
|         return ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
 | |
|     }
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto output = outputs[0];
 | |
|         auto layer = op->main_as_Convolution2D()->common();
 | |
|         auto oSize = output->batch() * output->height() * output->width() * output->channel();
 | |
|         auto flops = (float)oSize * layer->kernelY() * layer->kernelX() / FLOPS_M;
 | |
|         return flops;
 | |
|     }
 | |
| };
 | |
| class Conv2DBackpropFilterSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         auto common = op->main_as_Convolution2D()->common();
 | |
|         auto kernel = outputs[0];
 | |
|         kernel->buffer().dimensions = 4;
 | |
|         kernel->buffer().type = halide_type_of<float>();
 | |
|         TensorUtils::getDescribe(kernel)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|         kernel->setLength(0, inputs[1]->channel());
 | |
|         kernel->setLength(1, inputs[0]->channel() / common->group());
 | |
|         kernel->setLength(2, common->kernelY());
 | |
|         kernel->setLength(3, common->kernelX());
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_TfQuantizedConv2D);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_QuantizedDepthwiseConv2D);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvInt8);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_DepthwiseConvInt8);
 | |
| REGISTER_SHAPE(Dilation2DSizeComputer, OpType_Dilation2D);
 | |
| REGISTER_SHAPE(Conv2DBackpropFilterSizeComputer, OpType_Conv2DBackPropFilter);
 | |
| } // namespace MNN
 |