mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			61 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeQuantizedMaxPool.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #ifdef MNN_SUPPORT_TFLITE_QUAN
 | |
| #include <math.h>
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class QuantizedMaxPoolComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         auto layer = op->main_as_QuantizedMaxPool();
 | |
| 
 | |
|         MNN_ASSERT(layer->strideX() == layer->strideY());
 | |
| 
 | |
|         int kernel_width  = layer->kernelX();
 | |
|         int kernel_height = layer->kernelY();
 | |
| 
 | |
|         int output_width  = 1;
 | |
|         int output_height = 1;
 | |
| 
 | |
|         auto input = inputs[0];
 | |
| 
 | |
|         if (layer->padType() == PoolPadType_SAME) {                                   // Tensorflow padding mode SAME
 | |
|             output_width  = ceil((float)input->width() / (float)layer->strideX());  // NHWC for tensorflow
 | |
|             output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
 | |
|         } else if (layer->padType() == PoolPadType_VALID) {                           // Tensorflow padding mode VALID
 | |
|             output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | |
|             output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | |
|         } else {
 | |
|             MNN_ASSERT(false); // unsupported type
 | |
|         }
 | |
| 
 | |
|         if (output_width <= 0 || output_height <= 0) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // max pool use nhwc
 | |
|         auto& outputBuffer         = outputs[0]->buffer();
 | |
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | |
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | |
| 
 | |
|         outputBuffer.dim[1].extent = output_height;
 | |
|         outputBuffer.dim[2].extent = output_width;
 | |
|         outputBuffer.dim[3].extent = input->buffer().dim[3].extent;
 | |
|         outputs[0]->setType(DataType_DT_UINT8);
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(QuantizedMaxPoolComputer, OpType_QuantizedMaxPool);
 | |
| } // namespace MNN
 | |
| #endif
 |