mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeRange.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "math.h"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| template <typename T>
 | |
| static int computeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     Tensor* start_in = inputs[0];
 | |
|     Tensor* limit_in = inputs[1];
 | |
|     Tensor* delta_in = inputs[2];
 | |
| 
 | |
|     MNN_ASSERT((1 == start_in->buffer().dimensions) || (0 == start_in->buffer().dimensions));
 | |
|     MNN_ASSERT((1 == limit_in->buffer().dimensions) || (0 == limit_in->buffer().dimensions));
 | |
|     MNN_ASSERT((1 == delta_in->buffer().dimensions) || (0 == delta_in->buffer().dimensions));
 | |
| 
 | |
|     const float start = (float)start_in->host<T>()[0];
 | |
|     const float limit = (float)limit_in->host<T>()[0];
 | |
|     const float delta = (float)delta_in->host<T>()[0];
 | |
| 
 | |
|     MNN_ASSERT(0 != delta);
 | |
|     if (delta > 0) {
 | |
|         if (limit < start) {
 | |
|             return 0;
 | |
|         }
 | |
|     } else {
 | |
|         if (limit > start) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int32_t size = ceilf(fabsf((limit - start) / delta));
 | |
|     return (int)size;
 | |
| }
 | |
| 
 | |
| class RangeComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(inputs.size() == 3);
 | |
|         int output_size = 0;
 | |
|         switch (inputs[0]->getType().code) {
 | |
|             case halide_type_int:
 | |
|                 output_size = computeSize<int32_t>(op, inputs, outputs);
 | |
|                 outputs[0]->setType(MNN::DataType_DT_INT32);
 | |
|                 break;
 | |
|             case halide_type_float:
 | |
|                 output_size = computeSize<float>(op, inputs, outputs);
 | |
|                 outputs[0]->setType(MNN::DataType_DT_FLOAT);
 | |
|                 break;
 | |
|             default:
 | |
|                 MNN_ASSERT(false); // unsupported type
 | |
|         }
 | |
|         outputs[0]->buffer().dimensions    = 1;
 | |
|         outputs[0]->buffer().dim[0].extent = output_size;
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(RangeComputer, OpType_Range, (std::vector<int>{0, 1, 2}));
 | |
| } // namespace MNN
 |