MNN/source/shape/ShapeReduction.cpp

77 lines
2.7 KiB
C++

//
// ShapeReduction.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
static int _getRealAxis(int axis, int n) {
if (axis < 0) {
return axis + n;
}
return axis;
}
class ReductionComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto output = outputs[0];
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
auto reduce = op->main_as_ReductionParam();
output->buffer().type = inputs[0]->buffer().type;
if (nullptr == reduce->dim() && inputs.size() == 1) {
output->buffer().dimensions = 0;
return true;
}
std::set<int> reduceDimSet;
if (nullptr != reduce->dim()) {
for (int i = 0; i < reduce->dim()->size(); ++i) {
reduceDimSet.insert(_getRealAxis(reduce->dim()->data()[i], inputs[0]->dimensions()));
}
} else {
auto input1 = inputs[1];
auto size = input1->elementSize();
auto dims = input1->host<int32_t>();
for (int i = 0; i < size; ++i) {
reduceDimSet.insert(_getRealAxis(dims[i], inputs[0]->dimensions()));
}
}
auto input = inputs[0];
const int inputDimensions = input->dimensions();
if (reduceDimSet.find(-1) != reduceDimSet.end()) {
// dim set have -1 which mean applying reduction on last dimension
reduceDimSet.erase(-1);
reduceDimSet.insert(inputDimensions - 1);
}
std::vector<int> newDims;
for (int i = 0; i < inputDimensions; ++i) {
if (reduceDimSet.find(i) == reduceDimSet.end()) {
newDims.push_back(input->length(i));
} else if (reduce->keepDims()) {
newDims.push_back(1);
}
}
output->buffer().dimensions = (int)newDims.size();
for (int i = 0; i < newDims.size(); ++i) {
output->buffer().dim[i].extent = newDims[i];
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
REGISTER_SHAPE_INPUTS(ReductionComputer, OpType_Reduction, {1});
} // namespace MNN