MNN/source/backend/cpu/CPURNNSequenceGRU.cpp

262 lines
13 KiB
C++

//
// CPURNNSequenceGRU.cpp
// MNN
//
// Created by MNN on 2019/03/19.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPURNNSequenceGRU.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/ConvOpt.h"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/TensorUtils.hpp"
namespace MNN {
// implement GRU cell function
// Ref: tensorflow/python/ops/rnn_cell_impl.py
void CPURNNSequenceGRU::runRNNStep(const uint8_t* input, const int inputLength, const bool linearBeforeReset,
std::shared_ptr<Tensor>& hiddenState, const int numUnits, Tensor* gateWeight, Tensor* gateBias,
Tensor* candidateWeight, Tensor* candidateBias, Tensor* recurrentBias,
std::shared_ptr<Tensor>& inputAndState, std::shared_ptr<Tensor>& gate,
std::shared_ptr<Tensor>& resetHt) {
auto bn = static_cast<CPUBackend*>(backend());
auto mulFunction = bn->functions()->MNNSelectBinaryFunctionForFloat(BinaryOpOperation_MUL);
auto addFunction = bn->functions()->MNNSelectBinaryFunctionForFloat(BinaryOpOperation_ADD);
auto subFunction = bn->functions()->MNNSelectBinaryFunctionForFloat(BinaryOpOperation_SUB);
auto tanhFunction = bn->functions()->MNNSelectUnaryFunctionForFloat(UnaryOpOperation_TANH, bn->precisionMode());
auto bytes = bn->functions()->bytes;
auto sigmoidFunc = bn->functions()->MNNSelectUnaryFunctionForFloat(UnaryOpOperation_SIGMOID, bn->precisionMode());
// gate is (z_t, r_t)
auto inputAndStatePtr = inputAndState->host<uint8_t>();
auto hiddenStatePtr = hiddenState->host<uint8_t>();
::memcpy(inputAndStatePtr, input, inputLength * bytes);
::memcpy(inputAndStatePtr + inputLength * bytes, hiddenStatePtr, numUnits * bytes);
inputAndState->setLength(1, inputLength + numUnits);
// // [x_t, h_t-1] * [W_zr, R_zr]: (1, inputLength + numUnits) X (inputLength + numUnits, 2 * numUnits)
mMatMulIU2U->execute(inputAndState->host<float>(), gateWeight->host<float>(), gate->host<float>(), gateBias->host<float>());
recurrentBias->setLength(1, 2 * numUnits);
addFunction(gate->host<float>(), gate->host<float>(), recurrentBias->host<float>(), 2*numUnits, -1);
// (1, 2*numUnits)
const int gateSize = gate->elementSize();
auto gatePtr = gate->host<uint8_t>();
sigmoidFunc(gatePtr, gatePtr, gateSize);
// reset gate, // r_t is the second segment
auto rtPtr = gatePtr + numUnits * bytes;
if (linearBeforeReset) {
// calculate Rt (.) (Ht_1 * Rh + Rbh)
auto recurrentHiddenBiasPtr = recurrentBias->host<uint8_t>() + 2 * numUnits * bytes;
auto rhWeightPtr = candidateWeight->host<uint8_t>() + inputLength * numUnits * bytes;
mMatMulU2U->execute(hiddenState->host<float>(), (float*)rhWeightPtr, resetHt->host<float>(), (float*)recurrentHiddenBiasPtr);
mulFunction(resetHt->host<float>(), rtPtr, resetHt->host<float>(), numUnits, -1);
// calculate Xt * Wh
mMatMulI2U->execute((float*)input, candidateWeight->host<float>(), (float*)(inputAndStatePtr + (inputLength + numUnits) * bytes), nullptr);
// sum 3 parts
addFunction(resetHt->host<float>(), resetHt->host<float>(), inputAndStatePtr + (inputLength + numUnits) * bytes, numUnits, -1);
addFunction(rtPtr, resetHt->host<float>(), candidateBias->host<float>(), numUnits, -1);
} else {
// r_t: (1, numUnits)
auto resetGatePtr = inputAndStatePtr + inputLength * bytes;
// h_t1(1, numUnits) = r_t(1, numUnits) * h_t-1_(1, numUnits)
mulFunction(resetGatePtr, rtPtr, hiddenStatePtr, numUnits, -1);
// deal with recurrent bias and linear_before_reset parameter
auto recurrentBiasAddedPtr = inputAndStatePtr + (inputLength + numUnits) * bytes;
auto recurrentHiddenBiasPtr = (float*)(recurrentBias->host<uint8_t>() + 2 * numUnits * bytes);
addFunction(recurrentBiasAddedPtr, recurrentHiddenBiasPtr, candidateBias->host<float>(), numUnits, -1);
mMatMulI2U->execute(inputAndState->host<float>(), candidateWeight->host<float>(), resetHt->host<float>(), nullptr);
// reuse r_t memory as h_t'
addFunction(rtPtr, resetHt->host<float>(), recurrentBiasAddedPtr, numUnits, -1);
}
// h = (1-g)*t+g*h = t + g*(h-t)
tanhFunction(resetHt->host<float>(), rtPtr, numUnits);
subFunction(hiddenStatePtr, hiddenStatePtr, resetHt->host<float>(), numUnits, -1);
mulFunction(hiddenStatePtr, hiddenStatePtr, gatePtr, numUnits, -1);
addFunction(hiddenStatePtr, hiddenStatePtr, resetHt->host<float>(), numUnits, -1);
inputAndState->setLength(1, inputLength + 2 * numUnits);
}
CPURNNSequenceGRU::CPURNNSequenceGRU(const Op* op, Backend* backend) : MNN::Execution(backend) {
auto rnnParam = op->main_as_RNNParam();
mKeepAllOutputs = rnnParam->keepAllOutputs();
mIsBidirectionalRNN = rnnParam->isBidirectionalRNN();
mNumUnits = rnnParam->numUnits();
mlinearBeforeReset = rnnParam->linearBeforeReset();
mMatMulIU2U.reset(new CPUMatMul(backend, false, false, true, true));
mMatMulU2U.reset(new CPUMatMul(backend, false, false, true, true));
mMatMulI2U.reset(new CPUMatMul(backend, false, false, true, true));
}
CPURNNSequenceGRU::~CPURNNSequenceGRU() {
mMatMulIU2U.reset();
mMatMulU2U.reset();
mMatMulI2U.reset();
}
ErrorCode CPURNNSequenceGRU::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
MNN_ASSERT(1 + 5 * (mIsBidirectionalRNN + 1) <= inputs.size());
auto input = inputs[0];
const int inputLastDimSize = input->length(2);
mHiddenState.reset(Tensor::createDevice<float>(std::vector<int>{1, mNumUnits}));
mInputAndState.reset(Tensor::createDevice<float>(std::vector<int>{1, inputLastDimSize + mNumUnits + mNumUnits}));
mGate.reset(Tensor::createDevice<float>(std::vector<int>{1, 2 * mNumUnits}));
mResetHt.reset(Tensor::createDevice<float>(std::vector<int>{1, mNumUnits}));
backend()->onAcquireBuffer(mHiddenState.get(), Backend::DYNAMIC);
backend()->onAcquireBuffer(mInputAndState.get(), Backend::DYNAMIC);
backend()->onAcquireBuffer(mGate.get(), Backend::DYNAMIC);
backend()->onAcquireBuffer(mResetHt.get(), Backend::DYNAMIC);
mInputAndState->setLength(1, inputLastDimSize + mNumUnits);
auto code = mMatMulIU2U->onResize({mInputAndState.get(), inputs[1]}, {mGate.get()});
if (NO_ERROR != code) {
return code;
}
mInputAndState->setLength(1, inputLastDimSize + 2 * mNumUnits);
if (mlinearBeforeReset) {
std::shared_ptr<Tensor> rhWeight(Tensor::create<float>({mNumUnits, mNumUnits}));
// unit, unit * unit -> unit
code = mMatMulU2U->onResize({mHiddenState.get(), rhWeight.get()}, {mResetHt.get()});
if (NO_ERROR != code) {
return code;
}
std::shared_ptr<Tensor> XtWhTensor(Tensor::create<float>({1, mNumUnits}));
std::shared_ptr<Tensor> inputTensor(Tensor::create<float>({1, inputLastDimSize}));
std::shared_ptr<Tensor> wTensor(Tensor::create<float>({inputLastDimSize, mNumUnits}));
code = mMatMulI2U->onResize({inputTensor.get(), wTensor.get()}, {XtWhTensor.get()});
} else {
std::shared_ptr<Tensor> A(Tensor::create<float>({1, mNumUnits + inputLastDimSize}));
std::shared_ptr<Tensor> B(Tensor::create<float>({mNumUnits + inputLastDimSize, mNumUnits}));
std::shared_ptr<Tensor> C(Tensor::create<float>({1, mNumUnits}));
code = mMatMulI2U->onResize({A.get(), B.get()}, {C.get()});
}
if (NO_ERROR != code) {
return code;
}
backend()->onReleaseBuffer(mHiddenState.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mInputAndState.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mGate.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mResetHt.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPURNNSequenceGRU::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto inputSize = inputs.size();
auto outputSize = outputs.size();
const int forwardParamNumber = 5;
MNN_ASSERT(inputSize >= 1 + forwardParamNumber * (mIsBidirectionalRNN + 1));
auto fwGateWeight = inputs[1];
auto fwGateBias = inputs[2];
auto fwCandidateWeight = inputs[3];
auto fwCandidateBias = inputs[4];
auto fwRecurrentBias = inputs[5];
auto cpuBn = static_cast<CPUBackend*>(backend());
auto bytes = cpuBn->functions()->bytes;
// fwGateWeight->printShape();// mFwGateWeight
// fwGateBias->printShape();// mFwGateBias
// fwCandidateWeight->printShape();// mFwCandidateWeight
// fwCandidateBias->printShape();// mFwCandidateBias
// fwRecurrentBias->printShape();// mFwRecurrentBias
// firstly set the hidden state to zero
auto const hiddenStatePtr = mHiddenState->host<uint8_t>();
const int hiddenStateDataSize = mHiddenState->elementSize() * bytes;
auto input = inputs[0]; // shape :(seq_length, batch_size, input_size)
auto output = outputs[0]; // shape :(seq_length, num_directions, batch_size, hidden_size)
auto const inputPtr = input->host<uint8_t>();
auto const outputPtr = output->host<uint8_t>();
auto outputYhPtr = mKeepAllOutputs && outputSize > 1 ? outputs[1]->host<uint8_t>() : outputs[0]->host<uint8_t>();
const int batchSize = input->length(1);
const int SequenceStride = input->stride(0);
const int inputSequenceLength = input->length(0);
const int inputCodeLength = input->length(2);
// MNN_PRINT("inputSequenceLength:%d, batchSize:%d, inputCodeLength:%d, mNumUnits:%d, hiddenStateDataSize:%d\n", inputSequenceLength, batchSize, inputCodeLength, mNumUnits, hiddenStateDataSize);
for (int b = 0; b < batchSize; ++b) { // swap order
if (inputSize > 1 + forwardParamNumber * (mIsBidirectionalRNN + 1)) {
auto source = inputs[inputSize - 1]->host<uint8_t>() + b * hiddenStateDataSize;
::memcpy(hiddenStatePtr, source, hiddenStateDataSize);
} else {
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
}
for (int i = 0; i < inputSequenceLength; ++i) {
const int inputOffset = i * SequenceStride + b * inputCodeLength;
runRNNStep(inputPtr + inputOffset * bytes, inputCodeLength, mlinearBeforeReset, mHiddenState, mNumUnits, fwGateWeight, fwGateBias,
fwCandidateWeight, fwCandidateBias, fwRecurrentBias, mInputAndState, mGate, mResetHt);
if (mKeepAllOutputs) {
::memcpy(outputPtr + (i * output->stride(0) + b * mNumUnits) * bytes, hiddenStatePtr, hiddenStateDataSize);
}
}
if ((mKeepAllOutputs && outputSize > 1) || !mKeepAllOutputs) {
::memcpy(outputYhPtr, hiddenStatePtr, hiddenStateDataSize);
outputYhPtr += mNumUnits * bytes;
}
}
// backward rnn
if (mIsBidirectionalRNN) {
auto outputYhPtr = mKeepAllOutputs && outputSize > 1 ? outputs[1]->host<uint8_t>() : outputs[0]->host<uint8_t>();
outputYhPtr += batchSize * mNumUnits * bytes;
// todo: modify the inputOffset
MNN_ASSERT(11 <= inputs.size());
auto bwGateWeight = inputs[6];
auto bwGateBias = inputs[7];
auto bwCandidateWeight = inputs[8];
auto bwCandidateBias = inputs[9];
auto bwRecurrentBias = inputs[10];
auto outputBw = outputs[0];
auto const outputBwPtr = outputBw->host<uint8_t>();
for (int b = 0; b < batchSize; ++b) {
if (inputSize > 1 + forwardParamNumber * 2) {
auto source = inputs[inputSize - 1]->host<uint8_t>() + (batchSize + b) * hiddenStateDataSize;
::memcpy(hiddenStatePtr, source, hiddenStateDataSize);
} else {
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
}
for (int i = inputSequenceLength - 1; i >= 0; i--) {
const int inputOffset = i * SequenceStride + b * inputCodeLength;
runRNNStep(inputPtr + inputOffset * bytes, inputCodeLength, mlinearBeforeReset, mHiddenState, mNumUnits, bwGateWeight, bwGateBias,
bwCandidateWeight, bwCandidateBias, bwRecurrentBias, mInputAndState, mGate, mResetHt);
if (mKeepAllOutputs) {
::memcpy(outputBwPtr + (i * outputBw->stride(0) + (batchSize + b) * mNumUnits) * bytes,
hiddenStatePtr, hiddenStateDataSize);
}
}
if ((mKeepAllOutputs && outputSize > 1) || !mKeepAllOutputs) {
::memcpy(outputYhPtr, hiddenStatePtr, hiddenStateDataSize);
outputYhPtr += mNumUnits * bytes;
}
}
}
return NO_ERROR;
}
class CPURNNSequenceGRUCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPURNNSequenceGRU(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPURNNSequenceGRUCreator, OpType_RNNSequenceGRU);
} // namespace MNN