MNN/source/backend/cuda/execution/ConvSingleInputExecution.cu

96 lines
4.0 KiB
Plaintext

//
// ConvSingleInputExecution.cpp
// MNN
//
// Created by MNN on 2020/08/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvSingleInputExecution.hpp"
#include "ConvWinogradExecution.hpp"
#include "ConvImplicitExecution.hpp"
#include "ConvCutlassExecution.hpp"
#include "MultiInputConvExecution.hpp"
#ifdef ENABLE_CUDA_QUANT
#include "int8/ConvInt8CutlassExecution.hpp"
#endif
#ifdef MNN_LOW_MEMORY
#include "weight_only_quant/ConvFpAIntBExecution.hpp"
#endif
#include "bf16/ConvCutlassBf16Execution.hpp"
#include "backend/cuda/core/CUDATools.hpp"
namespace MNN {
namespace CUDA {
class CUDAConvolutionCreator : public CUDABackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
if (nullptr != op->main_as_Convolution2D()->quanParameter()) {
auto quan = op->main_as_Convolution2D()->quanParameter();
if (1 == quan->type() || 2 == quan->type()) {
if (quan->has_scaleInt()) {
// Don't support IDST-int8 because of error
return nullptr;
}
}
}
#ifdef MNN_LOW_MEMORY
auto conv2dParams = op->main_as_Convolution2D();
bool isMemoryLowWeightOnlyQuant = conv2dParams->quanParameter() && (conv2dParams->external() || conv2dParams->quanParameter()->buffer());
isMemoryLowWeightOnlyQuant = isMemoryLowWeightOnlyQuant && (static_cast<CUDABackend*>(backend)->getMemoryMode() == BackendConfig::Memory_Low);
isMemoryLowWeightOnlyQuant = isMemoryLowWeightOnlyQuant && ConvFpAIntBExecution::isValid(op->main_as_Convolution2D(), backend);
if (isMemoryLowWeightOnlyQuant) {
std::shared_ptr<ConvFpAIntBExecution::Resource> resource(new ConvFpAIntBExecution::Resource(backend, op));
return new ConvFpAIntBExecution(backend, op, resource);
}
#endif
if (inputs.size() == 2 || inputs.size() == 3) {
return new MultiInputConvExecution(op, backend);
}
auto conv = op->main_as_Convolution2D()->common();
if(ConvImplicitExecution::isValid(op->main_as_Convolution2D(), inputs[0], outputs[0], backend)) { // inputs[0] is invalid now.
std::shared_ptr<ConvImplicitExecution::Resource> resource(new ConvImplicitExecution::Resource(backend, op));
return new ConvImplicitExecution(backend, op, resource);
}
if(ConvWinogradExecution::isValid(op->main_as_Convolution2D())) { // inputs[0] is invalid now.
//printf("%dx%ds%dd%d\n", conv->kernelX(), conv->kernelY(), conv->strideX(), conv->dilateX());
std::shared_ptr<ConvWinogradExecution::Resource> resource(new ConvWinogradExecution::Resource(backend, op));
return new ConvWinogradExecution(backend, op, resource);
}
#ifdef ENABLE_CUDA_BF16
if (static_cast<CUDABackend*>(backend)->getPrecision() == 3) {
std::shared_ptr<ConvCutlassBf16Execution::Resource> resource(new ConvCutlassBf16Execution::Resource(backend, op));
return new ConvCutlassBf16Execution(backend, op, resource);
}
#endif
std::shared_ptr<ConvCutlassExecution::Resource> resource(new ConvCutlassExecution::Resource(backend, op));
return new ConvCutlassExecution(backend, op, resource);
}
};
#ifdef ENABLE_CUDA_QUANT
class CUDAConvolutionInt8Creator : public CUDABackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
std::shared_ptr<ConvInt8CutlassExecution::Resource> resource(new ConvInt8CutlassExecution::Resource(backend, op));
return new ConvInt8CutlassExecution(backend, op, resource);
}
};
CUDACreatorRegister<CUDAConvolutionInt8Creator> __ConvInt8Execution(OpType_ConvInt8);
#endif
CUDACreatorRegister<CUDAConvolutionCreator> __ConvExecution(OpType_Convolution);
}// namespace CUDA
}// namespace MNN