mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			304 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			304 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  GeometryConv3D.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2020/7/30.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #include "ConvertUtils.hpp"
 | |
| #include "GeometryConvUtils.hpp"
 | |
| #include "geometry/GeometryComputer.hpp"
 | |
| #include "core/OpCommonUtils.hpp"
 | |
| #include "geometry/GeometryComputerUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| class GeometryConv3D : public GeometryComputer {
 | |
| public:
 | |
|     virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, Context& context, CommandBuffer& res) const override {
 | |
|         auto input      = inputs[0];
 | |
|         auto output = outputs[0];
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(output)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
 | |
|         auto biasData = op->main_as_Convolution3D()->bias();
 | |
|         auto weightData = op->main_as_Convolution3D()->weight();
 | |
|         auto common     = op->main_as_Convolution3D()->common();
 | |
|         auto kernels = common->kernels();
 | |
|         auto strides = common->strides();
 | |
|         auto pads = common->pads();
 | |
|         auto dialtes = common->dilates();
 | |
|         const int kernelDepth = kernels->Get(0), kernelHeight = kernels->Get(1), kernelWidth = kernels->Get(2);
 | |
|         const int strideDepth = strides->Get(0), strideHeight = strides->Get(1), strideWidth = strides->Get(2);
 | |
|         const int dialteDepth = dialtes->Get(0), dialteHeight = dialtes->Get(1), dialteWidth = dialtes->Get(2);
 | |
|         const int padDepth = pads->Get(0), padHeight = pads->Get(1), padWidth = pads->Get(2);
 | |
|         const int outputDepth = output->length(2), outputHeight = output->length(3), outputWidth = output->length(4);
 | |
|         const int inputDepth = input->length(2), inputHeight = input->length(3), inputWidth = input->length(4);
 | |
|         const int inputChannel = input->length(1), batch = input->length(0), outputChannel = output->length(1);
 | |
| 
 | |
|         auto weightTensor = context.allocConst(op, {static_cast<int>(weightData->size())}, halide_type_of<float>());
 | |
|         ::memcpy(weightTensor.get()->host<float>(), weightData->data(), weightData->size()*sizeof(float));
 | |
|         auto weight = weightTensor.get();
 | |
|         auto biasTensor = context.allocConst(op, {outputChannel}, halide_type_of<float>());
 | |
|         ::memcpy(biasTensor.get()->host<float>(), biasData->data(), biasData->size()*sizeof(float));
 | |
|         auto bias = biasTensor.get();
 | |
| 
 | |
|         Tensor* A = nullptr;
 | |
|         Tensor* B = nullptr;
 | |
|         {
 | |
|             // B: Input Im2Col, n, ic, id, ih, iw -> ic*kd*kh*kw*n*od*oh*ow
 | |
|             std::shared_ptr<Tensor> im2Col(new Tensor);
 | |
|             GeometryConvUtils::im2Col3d(im2Col.get(), input, inputChannel, kernelDepth, kernelHeight, kernelWidth,
 | |
|             batch, outputDepth, outputHeight, outputWidth, inputDepth, inputHeight, inputWidth,
 | |
|             strideDepth, strideHeight, strideWidth, dialteDepth, dialteHeight, dialteWidth, padDepth, padHeight, padWidth);
 | |
|             B = im2Col.get();
 | |
|             res.extras.emplace_back(im2Col);
 | |
|         }
 | |
|         {
 | |
|             // A: Weight oc, ic, kd, kh, kw -> oc, ic*kd*kh*kw
 | |
|             std::shared_ptr<Tensor> kernel(new Tensor);
 | |
|             A                           = kernel.get();
 | |
|             kernel->buffer().type       = halide_type_of<float>();
 | |
|             kernel->buffer().dimensions = 2;
 | |
|             kernel->setLength(0, outputChannel);
 | |
|             kernel->setLength(1, inputChannel*kernelDepth*kernelHeight*kernelWidth);
 | |
|             auto des             = TensorUtils::getDescribe(kernel.get());
 | |
|             des->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|             GeometryComputerUtils::makeRawAddressRef(kernel.get(), weight, 0, inputChannel*kernelDepth*kernelHeight*kernelWidth * outputChannel);
 | |
|             res.extras.emplace_back(std::move(kernel));
 | |
|         }
 | |
|         {
 | |
|             // C = MatMul(B, A)
 | |
|             std::shared_ptr<Tensor> C(new Tensor);
 | |
|             C->buffer().type       = halide_type_of<float>();
 | |
|             C->buffer().dimensions = 2;
 | |
|             C->setLength(0, batch * outputDepth * outputHeight * outputWidth);
 | |
|             C->setLength(1, outputChannel);
 | |
|             TensorUtils::getDescribe(C.get())->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeMatMul(B, A, C.get(), bias, true, true));
 | |
|             res.extras.emplace_back(C);
 | |
|             // Activation
 | |
|             float minValue = 0.0f, maxValue = 0.0f;
 | |
|             bool needPostTreat = false;
 | |
|             if (common->relu()) {
 | |
|                 needPostTreat = true;
 | |
|                 minValue      = 0.0f;
 | |
|                 maxValue      = std::numeric_limits<float>().max();
 | |
|             }
 | |
|             if (common->relu6()) {
 | |
|                 needPostTreat = true;
 | |
|                 minValue      = 0.0f;
 | |
|                 maxValue      = 6.0f;
 | |
|             }
 | |
|             if (needPostTreat) {
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(GeometryConvUtils::makeRelu6(builder, minValue, maxValue));
 | |
|                 std::shared_ptr<Tensor> C2(new Tensor);
 | |
|                 C2->buffer().type       = halide_type_of<float>();
 | |
|                 C2->buffer().dimensions = 2;
 | |
|                 C2->setLength(0, batch * outputDepth * outputHeight * outputWidth);
 | |
|                 C2->setLength(1, outputChannel);
 | |
|                 TensorUtils::getDescribe(C2.get())->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, {C.get()}, {C2.get()});
 | |
|                 res.command.emplace_back(cmd);
 | |
|                 res.extras.emplace_back(C2);
 | |
|                 C = C2;
 | |
|             }
 | |
|             // Transpose
 | |
|             // Batch, od, oh, ow, oc -> batch, oc, od, oh, ow
 | |
|             TensorUtils::setLinearLayout(C.get());
 | |
|             if (outputDepth * outputWidth * outputHeight == 1) {
 | |
|                 GeometryComputerUtils::makeRawAddressRef(outputs[0], C.get(), 0, batch * outputChannel);
 | |
|             } else {
 | |
|                 auto kernelDiffDes        = TensorUtils::getDescribe(outputs[0]);
 | |
|                 kernelDiffDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|                 kernelDiffDes->regions.resize(1);
 | |
|                 auto& desReg         = kernelDiffDes->regions[0];
 | |
|                 desReg.size[0]       = batch;
 | |
|                 desReg.size[1]       = outputChannel;
 | |
|                 desReg.size[2]       = outputDepth * outputHeight * outputWidth;
 | |
|                 desReg.dst.offset    = 0;
 | |
|                 desReg.dst.stride[0] = outputChannel * outputDepth * outputHeight * outputWidth;
 | |
|                 desReg.dst.stride[1] = outputDepth * outputHeight * outputWidth;
 | |
|                 desReg.dst.stride[2] = 1;
 | |
|                 desReg.src.offset    = 0;
 | |
|                 desReg.src.stride[0] = outputChannel * outputDepth * outputHeight * outputWidth;
 | |
|                 desReg.src.stride[1] = 1;
 | |
|                 desReg.src.stride[2] = outputChannel;
 | |
|                 desReg.origin        = C.get();
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| class GeometryConvTranspose3D : public GeometryConv3D {
 | |
| public:
 | |
|     virtual bool
 | |
|     onCompute(const Op *op, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, Context &context,
 | |
|               CommandBuffer &res) const override {
 | |
|         auto input = inputs[0];
 | |
|         auto output = outputs[0];
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(output)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
 | |
|         auto biasData = op->main_as_Convolution3D()->bias();
 | |
|         auto weightData = op->main_as_Convolution3D()->weight();
 | |
|         auto common = op->main_as_Convolution3D()->common();
 | |
|         auto kernels = common->kernels();
 | |
|         auto strides = common->strides();
 | |
|         auto pads = common->pads();
 | |
|         auto dialtes = common->dilates();
 | |
|         const int kernelDepth = kernels->Get(0), kernelHeight = kernels->Get(1), kernelWidth = kernels->Get(2);
 | |
|         const int strideDepth = strides->Get(0), strideHeight = strides->Get(1), strideWidth = strides->Get(2);
 | |
|         const int dialteDepth = dialtes->Get(0), dialteHeight = dialtes->Get(1), dialteWidth = dialtes->Get(2);
 | |
|         const int padDepth = pads->Get(0), padHeight = pads->Get(1), padWidth = pads->Get(2);
 | |
|         const int outputDepth = output->length(2), outputHeight = output->length(3), outputWidth = output->length(4);
 | |
|         const int inputDepth = input->length(2), inputHeight = input->length(3), inputWidth = input->length(4);
 | |
|         const int inputChannel = input->length(1), batch = input->length(0), outputChannel = output->length(1);
 | |
| 
 | |
|         auto weightTensor = context.allocConst(op, {static_cast<int>(weightData->size())}, halide_type_of<float>());
 | |
|         ::memcpy(weightTensor.get()->host<float>(), weightData->data(), weightData->size() * sizeof(float));
 | |
|         auto weight = weightTensor.get();
 | |
|         auto biasTensor = context.allocConst(op, {outputChannel}, halide_type_of<float>());
 | |
|         ::memcpy(biasTensor.get()->host<float>(), biasData->data(), biasData->size() * sizeof(float));
 | |
|         auto bias = biasTensor.get();
 | |
| 
 | |
|         Tensor *A = nullptr;
 | |
|         Tensor *B = nullptr;
 | |
|         {
 | |
|             // B: Input n, ic, id, ih, iw -> ic, n * id * ih * iw
 | |
|             std::shared_ptr<Tensor> dest(Tensor::createDevice<float>({inputChannel, batch * inputDepth * inputHeight * inputWidth}));
 | |
|             res.extras.emplace_back(dest);
 | |
|             B = dest.get();
 | |
|             auto des = TensorUtils::getDescribe(dest.get());
 | |
|             des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             des->regions.resize(1);
 | |
|             auto& reg = des->regions[0];
 | |
|             reg.origin = input;
 | |
|             reg.size[0] = inputChannel;
 | |
|             reg.size[1] = batch;
 | |
|             reg.size[2] = inputDepth * inputHeight * inputWidth;
 | |
|             reg.src.offset = 0;
 | |
|             reg.src.stride[0] = inputDepth * inputHeight * inputWidth;
 | |
|             reg.src.stride[1] = inputChannel * inputDepth * inputHeight * inputWidth;
 | |
|             reg.src.stride[2] = 1;
 | |
|             reg.dst.offset = 0;
 | |
|             reg.dst.stride[0] = inputDepth * inputHeight * inputWidth * batch;
 | |
|             reg.dst.stride[1] = inputDepth * inputHeight * inputWidth;
 | |
|             reg.dst.stride[2] = 1;
 | |
|         }
 | |
|         {
 | |
|             // A: Weight oc, ic, kd, kh, kw -> oc, ic*kd*kh*kw
 | |
|             std::shared_ptr<Tensor> kernel(Tensor::createDevice<float>({inputChannel, outputChannel * kernelDepth * kernelHeight * kernelWidth}));
 | |
|             A                           = kernel.get();
 | |
|             GeometryComputerUtils::makeRawAddressRef(kernel.get(), weight, 0, inputChannel * kernelDepth * kernelHeight * kernelWidth * outputChannel);
 | |
|             res.extras.emplace_back(std::move(kernel));
 | |
|         }
 | |
|         {
 | |
|             // C = MatMul(B, A)
 | |
|             std::shared_ptr<Tensor> C(Tensor::createDevice<float>({outputChannel * kernelDepth * kernelHeight * kernelWidth, batch * inputDepth * inputHeight * inputWidth}));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeMatMul(A, B, C.get(), nullptr, true, false));
 | |
|             res.extras.emplace_back(C);
 | |
| 
 | |
|             // Col2Im:
 | |
|             // 1. C-> C' batch, oc, oh, ow, kw*kh, 2. C' -> C'' batch, oc, oh, ow (reduce_sum)
 | |
|             // 3. C'' -> C'' + bias, 4. posttreat(C'' + bias)
 | |
|             std::shared_ptr<Tensor> C_(Tensor::createDevice<float>({1, batch*outputChannel*kernelDepth*kernelHeight*kernelWidth, batch * outputChannel * outputDepth * outputHeight * outputWidth}));
 | |
|             res.extras.emplace_back(C_);
 | |
|             {
 | |
|                 std::shared_ptr<Tensor> im2ColTemp(Tensor::createDevice<float>({outputChannel * kernelDepth * kernelHeight * kernelWidth, batch * inputDepth * inputHeight * inputWidth}));
 | |
|                 GeometryConvUtils::im2Col3d(im2ColTemp.get(), output, outputChannel, kernelDepth, kernelHeight, kernelWidth,
 | |
|                                             batch, inputDepth, inputHeight, inputWidth,
 | |
|                                             outputDepth, outputHeight,outputWidth,
 | |
|                                             strideDepth, strideHeight, strideWidth,
 | |
|                                             dialteDepth, dialteHeight, dialteWidth,
 | |
|                                             padDepth, padHeight, padWidth);
 | |
|                 auto des = TensorUtils::getDescribe(C_.get());
 | |
|                 des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|                 auto originDes = TensorUtils::getDescribe(im2ColTemp.get());
 | |
|                 des->regions = std::move(originDes->regions);
 | |
|                 // Swap src and dst, from im2col3d->col2im3d
 | |
|                 int idx = 0;
 | |
|                 for (auto& reg : des->regions) {
 | |
|                     reg.origin = C.get();
 | |
|                     auto temp = reg.src;
 | |
|                     reg.src = std::move(reg.dst);
 | |
|                     reg.dst = std::move(temp);
 | |
|                     reg.dst.offset += outputChannel * outputDepth * outputHeight * outputWidth * batch * idx;
 | |
|                     idx++;
 | |
|                 }
 | |
|             }
 | |
|             std::shared_ptr<Tensor> C__(Tensor::createDevice<float>({1, 1, batch * outputChannel * outputDepth * outputHeight * outputWidth}));
 | |
|             res.extras.emplace_back(C__);
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeReduce(ReductionType_SUM, C_.get(), C__.get()));
 | |
|             {
 | |
|                 std::shared_ptr<Tensor> biasLarge(Tensor::createDevice<float>({1, 1, batch * outputChannel * outputDepth * outputHeight * outputWidth}));
 | |
|                 res.extras.emplace_back(biasLarge);
 | |
|                 auto des = TensorUtils::getDescribe(biasLarge.get());
 | |
|                 des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|                 des->regions.resize(1);
 | |
|                 auto& reg = des->regions[0];
 | |
|                 reg.origin = bias;
 | |
|                 reg.size[0] = batch;
 | |
|                 reg.size[1] = outputChannel;
 | |
|                 reg.size[2] = outputDepth * outputHeight * outputWidth;
 | |
|                 reg.src.offset = 0;
 | |
|                 reg.src.stride[0] = 0;
 | |
|                 reg.src.stride[1] = 1;
 | |
|                 reg.src.stride[2] = 0;
 | |
|                 reg.dst.offset = 0;
 | |
|                 reg.dst.stride[0] = outputChannel * outputDepth * outputHeight * outputWidth;
 | |
|                 reg.dst.stride[1] = outputDepth * outputHeight * outputWidth;
 | |
|                 reg.dst.stride[2] = 1;
 | |
|                 std::shared_ptr<Tensor> temp(Tensor::createDevice<float>({1, 1, batch * outputDepth * outputHeight * outputWidth * outputChannel}));
 | |
|                 res.extras.emplace_back(temp);
 | |
|                 res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, C__.get(), biasLarge.get(), temp.get()));
 | |
|                 C__ = temp;
 | |
|             }
 | |
| 
 | |
|             // Activation
 | |
|             float minValue = 0.0f, maxValue = 0.0f;
 | |
|             bool needPostTreat = false;
 | |
|             if (common->relu()) {
 | |
|                 needPostTreat = true;
 | |
|                 minValue = 0.0f;
 | |
|                 maxValue = std::numeric_limits<float>().max();
 | |
|             }
 | |
|             if (common->relu6()) {
 | |
|                 needPostTreat = true;
 | |
|                 minValue = 0.0f;
 | |
|                 maxValue = 6.0f;
 | |
|             }
 | |
|             if (needPostTreat) {
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(GeometryConvUtils::makeRelu6(builder, minValue, maxValue));
 | |
|                 std::shared_ptr<Tensor> C2(new Tensor);
 | |
|                 C2->buffer().type       = halide_type_of<float>();
 | |
|                 C2->buffer().dimensions = 3;
 | |
|                 C2->setLength(0, 1);
 | |
|                 C2->setLength(1, 1);
 | |
|                 C2->setLength(2, batch * outputDepth * outputHeight * outputWidth * outputChannel);
 | |
|                 TensorUtils::getDescribe(C2.get())->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, {C__.get()}, {C2.get()});
 | |
|                 res.command.emplace_back(cmd);
 | |
|                 res.extras.emplace_back(C2);
 | |
|                 C__ = C2;
 | |
|             }
 | |
|             GeometryComputerUtils::makeRawAddressRef(outputs[0], C__.get(), 0, batch * outputChannel * outputDepth * outputHeight * outputWidth);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void _create() {
 | |
|     std::shared_ptr<GeometryComputer> comp(new GeometryConv3D);
 | |
|     GeometryComputer::registerGeometryComputer(comp, {OpType_Convolution3D});
 | |
| 
 | |
|     std::shared_ptr<GeometryComputer> comp2(new GeometryConvTranspose3D);
 | |
|     GeometryComputer::registerGeometryComputer(comp2, {OpType_ConvTranspose3D});
 | |
| 
 | |
| }
 | |
| 
 | |
| REGISTER_GEOMETRY(GeometryConv3D, _create);
 | |
| 
 | |
| } // namespace MNN
 |