MNN/source/backend/cpu/CPUInterp.cpp

163 lines
5.7 KiB
C++

//
// CPUInterp.cpp
// MNN
//
// Created by MNN on 2018/07/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUInterp.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/CPUResize.hpp"
namespace MNN {
static int CLAMP(int v, int min, int max) {
if ((v) < min) {
(v) = min;
} else if ((v) > max) {
(v) = max;
}
return v;
}
CPUInterp::CPUInterp(Backend *backend, int resizeType,
float widthScale, float heightScale, float widthOffset, float heightOffset)
: CPUResizeCommon(backend),
mResizeType(resizeType),
mWidthScale(widthScale),
mHeightScale(heightScale),
mWidthOffset(widthOffset),
mHeightOffset(heightOffset) {
// nothing to do
}
CPUInterp::~CPUInterp() {
if (mInit && mResizeType == 2) {
backend()->onReleaseBuffer(&mWidthPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mWidthFactor, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightFactor, Backend::STATIC);
}
}
ErrorCode CPUInterp::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto &input = inputs[0]->buffer();
auto &output = outputs[0]->buffer();
if (mResizeType == 1) {
// Nearstneighbor
CPUResizeNearestneighborC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
} else if (mResizeType == 2) {
// bilinear
CPUResizeBilinearC4(input, output, mWidthPosition.host<int>(), mWidthFactor.host<float>(),
mHeightPosition.host<int>(), mHeightFactor.host<float>(), mLineBuffer.host<float>(),
((CPUBackend *)backend())->threadNumber());
} else if (mResizeType == 3) {
// cubic
CPUResizeCubicC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
} else if (mResizeType == 4) {
// Nearstneighbor
CPUResizeNearestneighborRoundC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
} else {
return NOT_SUPPORT;
}
return NO_ERROR;
}
ErrorCode CPUInterp::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
if (mResizeType != 2) {
return NO_ERROR;
}
const int inW = inputs[0]->buffer().dim[3].extent;
const int inH = inputs[0]->buffer().dim[2].extent;
const int outW = outputs[0]->buffer().dim[3].extent;
const int outH = outputs[0]->buffer().dim[2].extent;
if (mInit && mResizeType == 2) {
backend()->onReleaseBuffer(&mWidthPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mWidthFactor, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightFactor, Backend::STATIC);
}
const float xScaling = mWidthScale;
const float yScaling = mHeightScale;
mWidthPosition.buffer().dim[0].extent = 2 * outW;
mWidthPosition.buffer().dimensions = 1;
mWidthPosition.setType(DataType_DT_INT32);
mWidthFactor.buffer().dim[0].extent = outW;
mWidthFactor.buffer().dimensions = 1;
mWidthFactor.setType(DataType_DT_FLOAT);
mHeightPosition.buffer().dim[0].extent = 2 * outH;
mHeightPosition.buffer().dimensions = 1;
mHeightPosition.setType(DataType_DT_INT32);
mHeightFactor.buffer().dim[0].extent = outH;
mHeightFactor.buffer().dimensions = 1;
mHeightFactor.setType(DataType_DT_FLOAT);
bool res = backend()->onAcquireBuffer(&mWidthPosition, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mWidthFactor, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mHeightPosition, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mHeightFactor, Backend::STATIC);
if (!res) {
return OUT_OF_MEMORY;
}
mInit = true;
auto _wPosition = mWidthPosition.host<int>();
auto _wFactor = mWidthFactor.host<float>();
// Compute Line Position
for (int x = 0; x < outW; ++x) {
float srcX = x * xScaling + mWidthOffset;
int x1 = floor(srcX);
float x2Factor = srcX - x1;
_wFactor[x] = x2Factor;
_wPosition[2 * x + 0] = CLAMP(x1, 0, inW - 1);
_wPosition[2 * x + 1] = CLAMP(x1 + 1, 0, inW - 1);
}
auto _hPosition = mHeightPosition.host<int>();
auto _hFactor = mHeightFactor.host<float>();
for (int y = 0; y < outH; ++y) {
float srcY = y * yScaling + mHeightOffset;
int y1 = floor(srcY);
float y2Factor = srcY - y1;
_hFactor[y] = y2Factor;
_hPosition[2 * y + 0] = CLAMP(y1, 0, inH - 1);
_hPosition[2 * y + 1] = CLAMP(y1 + 1, 0, inH - 1);
}
int threadNumber = ((CPUBackend *)backend())->threadNumber();
mLineBuffer.buffer().dim[0].extent = 2 * 4 * outW * threadNumber;
mLineBuffer.buffer().dimensions = 1;
mLineBuffer.setType(DataType_DT_FLOAT);
res = backend()->onAcquireBuffer(&mLineBuffer, Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mLineBuffer, Backend::DYNAMIC);
return NO_ERROR;
}
class CPUInterpCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
auto interp = op->main_as_Interp();
return new CPUInterp(backend, interp->resizeType(),
interp->widthScale(), interp->heightScale(), interp->widthOffset(), interp->heightOffset());
}
};
REGISTER_CPU_OP_CREATOR(CPUInterpCreator, OpType_Interp);
} // namespace MNN