mirror of https://github.com/alibaba/MNN.git
163 lines
5.7 KiB
C++
163 lines
5.7 KiB
C++
//
|
|
// CPUInterp.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/17.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUInterp.hpp"
|
|
#include <math.h>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/CPUResize.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
static int CLAMP(int v, int min, int max) {
|
|
if ((v) < min) {
|
|
(v) = min;
|
|
} else if ((v) > max) {
|
|
(v) = max;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
CPUInterp::CPUInterp(Backend *backend, int resizeType,
|
|
float widthScale, float heightScale, float widthOffset, float heightOffset)
|
|
: CPUResizeCommon(backend),
|
|
mResizeType(resizeType),
|
|
mWidthScale(widthScale),
|
|
mHeightScale(heightScale),
|
|
mWidthOffset(widthOffset),
|
|
mHeightOffset(heightOffset) {
|
|
// nothing to do
|
|
}
|
|
|
|
CPUInterp::~CPUInterp() {
|
|
if (mInit && mResizeType == 2) {
|
|
backend()->onReleaseBuffer(&mWidthPosition, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mWidthFactor, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mHeightPosition, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mHeightFactor, Backend::STATIC);
|
|
}
|
|
}
|
|
|
|
ErrorCode CPUInterp::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto &input = inputs[0]->buffer();
|
|
auto &output = outputs[0]->buffer();
|
|
|
|
if (mResizeType == 1) {
|
|
// Nearstneighbor
|
|
CPUResizeNearestneighborC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
|
|
} else if (mResizeType == 2) {
|
|
// bilinear
|
|
CPUResizeBilinearC4(input, output, mWidthPosition.host<int>(), mWidthFactor.host<float>(),
|
|
mHeightPosition.host<int>(), mHeightFactor.host<float>(), mLineBuffer.host<float>(),
|
|
((CPUBackend *)backend())->threadNumber());
|
|
} else if (mResizeType == 3) {
|
|
// cubic
|
|
CPUResizeCubicC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
|
|
} else if (mResizeType == 4) {
|
|
// Nearstneighbor
|
|
CPUResizeNearestneighborRoundC4(input, output, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
|
|
} else {
|
|
return NOT_SUPPORT;
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUInterp::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
if (mResizeType != 2) {
|
|
return NO_ERROR;
|
|
}
|
|
const int inW = inputs[0]->buffer().dim[3].extent;
|
|
const int inH = inputs[0]->buffer().dim[2].extent;
|
|
const int outW = outputs[0]->buffer().dim[3].extent;
|
|
const int outH = outputs[0]->buffer().dim[2].extent;
|
|
if (mInit && mResizeType == 2) {
|
|
backend()->onReleaseBuffer(&mWidthPosition, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mWidthFactor, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mHeightPosition, Backend::STATIC);
|
|
backend()->onReleaseBuffer(&mHeightFactor, Backend::STATIC);
|
|
}
|
|
const float xScaling = mWidthScale;
|
|
const float yScaling = mHeightScale;
|
|
|
|
mWidthPosition.buffer().dim[0].extent = 2 * outW;
|
|
mWidthPosition.buffer().dimensions = 1;
|
|
mWidthPosition.setType(DataType_DT_INT32);
|
|
|
|
mWidthFactor.buffer().dim[0].extent = outW;
|
|
mWidthFactor.buffer().dimensions = 1;
|
|
mWidthFactor.setType(DataType_DT_FLOAT);
|
|
|
|
mHeightPosition.buffer().dim[0].extent = 2 * outH;
|
|
mHeightPosition.buffer().dimensions = 1;
|
|
mHeightPosition.setType(DataType_DT_INT32);
|
|
|
|
mHeightFactor.buffer().dim[0].extent = outH;
|
|
mHeightFactor.buffer().dimensions = 1;
|
|
mHeightFactor.setType(DataType_DT_FLOAT);
|
|
bool res = backend()->onAcquireBuffer(&mWidthPosition, Backend::STATIC);
|
|
res = res && backend()->onAcquireBuffer(&mWidthFactor, Backend::STATIC);
|
|
res = res && backend()->onAcquireBuffer(&mHeightPosition, Backend::STATIC);
|
|
res = res && backend()->onAcquireBuffer(&mHeightFactor, Backend::STATIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
mInit = true;
|
|
|
|
auto _wPosition = mWidthPosition.host<int>();
|
|
auto _wFactor = mWidthFactor.host<float>();
|
|
|
|
// Compute Line Position
|
|
for (int x = 0; x < outW; ++x) {
|
|
float srcX = x * xScaling + mWidthOffset;
|
|
int x1 = floor(srcX);
|
|
float x2Factor = srcX - x1;
|
|
|
|
_wFactor[x] = x2Factor;
|
|
_wPosition[2 * x + 0] = CLAMP(x1, 0, inW - 1);
|
|
_wPosition[2 * x + 1] = CLAMP(x1 + 1, 0, inW - 1);
|
|
}
|
|
|
|
auto _hPosition = mHeightPosition.host<int>();
|
|
auto _hFactor = mHeightFactor.host<float>();
|
|
|
|
for (int y = 0; y < outH; ++y) {
|
|
float srcY = y * yScaling + mHeightOffset;
|
|
int y1 = floor(srcY);
|
|
float y2Factor = srcY - y1;
|
|
|
|
_hFactor[y] = y2Factor;
|
|
_hPosition[2 * y + 0] = CLAMP(y1, 0, inH - 1);
|
|
_hPosition[2 * y + 1] = CLAMP(y1 + 1, 0, inH - 1);
|
|
}
|
|
|
|
int threadNumber = ((CPUBackend *)backend())->threadNumber();
|
|
|
|
mLineBuffer.buffer().dim[0].extent = 2 * 4 * outW * threadNumber;
|
|
mLineBuffer.buffer().dimensions = 1;
|
|
mLineBuffer.setType(DataType_DT_FLOAT);
|
|
res = backend()->onAcquireBuffer(&mLineBuffer, Backend::DYNAMIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
backend()->onReleaseBuffer(&mLineBuffer, Backend::DYNAMIC);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUInterpCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const {
|
|
auto interp = op->main_as_Interp();
|
|
return new CPUInterp(backend, interp->resizeType(),
|
|
interp->widthScale(), interp->heightScale(), interp->widthOffset(), interp->heightOffset());
|
|
}
|
|
};
|
|
REGISTER_CPU_OP_CREATOR(CPUInterpCreator, OpType_Interp);
|
|
|
|
} // namespace MNN
|