mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			317 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUSoftmax.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/07/16.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUSoftmax.hpp"
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #ifdef MNN_USE_NEON
 | |
| #include <arm_neon.h>
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| int CPUSoftmax::_softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
 | |
|     // Max and sub
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum)
 | |
|     {
 | |
|         const float *srcY = srcData + tId * channel;
 | |
|         float *dstY       = dstData + tId * channel;
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += channel * threadNum, dstY += channel * threadNum) {
 | |
|             float maxValue = srcY[0];
 | |
|             {
 | |
|                 int c = 1;
 | |
| #ifdef MNN_USE_NEON
 | |
| #if !(defined(__ARM_FEATURE_FMA) && defined(__aarch64__))
 | |
| #define vmaxvq_f32(v)                 \
 | |
|     ({                                \
 | |
|         float __m = v[0];             \
 | |
|         for (int i = 1; i < 4; i++) { \
 | |
|             if (v[i] > __m)           \
 | |
|                 __m = v[i];           \
 | |
|         }                             \
 | |
|         __m;                          \
 | |
|     })
 | |
| #endif
 | |
|                 if (c + 3 < channel) {
 | |
|                     float32x4_t maxx4 = vld1q_f32(srcY + c);
 | |
|                     c += 4;
 | |
|                     for (; c + 3 < channel; c += 4) {
 | |
|                         maxx4 = vmaxq_f32(maxx4, vld1q_f32(srcY + c));
 | |
|                     }
 | |
|                     float value = vmaxvq_f32(maxx4);
 | |
|                     if (value > maxValue)
 | |
|                         maxValue = value;
 | |
|                 }
 | |
| #endif
 | |
|                 for (; c < channel; ++c) {
 | |
|                     float value = srcY[c];
 | |
|                     if (value > maxValue)
 | |
|                         maxValue = value;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (int c = 0; c < channel; ++c) {
 | |
|                 dstY[c] = -srcY[c] + maxValue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     
 | |
|     //Exp
 | |
|     auto schedule = ((CPUBackend*)backend())->multiThreadDivide(channel * outside);
 | |
|     int sizeDivide = schedule.first;
 | |
|     int scheduleNumber = schedule.second;
 | |
| 
 | |
|     MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
 | |
|         int start = sizeDivide * (int)tId;
 | |
|         int realSize = sizeDivide;
 | |
|         if (tId == scheduleNumber -1 ) {
 | |
|             realSize = channel * outside - start;
 | |
|         }
 | |
|         if (realSize > 0) {
 | |
|             MNNExp(dstData + start, dstData + start, realSize);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
| 
 | |
|     // Sum and div
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | |
|     {
 | |
|         float *dstY       = dstData + tId * channel;
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, dstY += channel * threadNum) {
 | |
|             // sum
 | |
|             float sumValue = 0;
 | |
| 
 | |
|             for (int c = 0; c < channel; ++c) {
 | |
|                 sumValue += dstY[c];
 | |
|             }
 | |
| 
 | |
|             // div
 | |
|             {
 | |
|                 int c = 0;
 | |
| #ifdef MNN_USE_NEON
 | |
|                 float div = 1.f / sumValue;
 | |
|                 for (; c + 3 < channel; c += 4) {
 | |
|                     vst1q_f32(dstY + c, vmulq_n_f32(vld1q_f32(dstY + c), div));
 | |
|                 }
 | |
| #endif
 | |
|                 for (; c < channel; ++c) {
 | |
|                     dstY[c] /= sumValue;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| int CPUSoftmax::_softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel,
 | |
|                                float *maxValue, float *sumValue, int threadNum) {
 | |
|     if (inside == 1)
 | |
|         return _softmax1(srcData, dstData, outside, channel, threadNum);
 | |
| 
 | |
|     const int stepY = inside * channel;
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | |
|     {
 | |
|         const float *srcY  = srcData + tId * stepY;
 | |
|         float *dstY        = dstData + tId * stepY;
 | |
|         float *maxValueSub = maxValue + tId * inside;
 | |
| 
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | |
|             memcpy(maxValueSub, srcY, sizeof(float) * inside);
 | |
|             const float *src = srcY + inside;
 | |
|             for (int c = 1; c < channel; ++c, src += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     if (src[x] > maxValueSub[x])
 | |
|                         maxValueSub[x] = src[x];
 | |
|                 }
 | |
|             }
 | |
|             src        = srcY;
 | |
|             float *dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     dst[x] = -src[x] + maxValueSub[x];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
| 
 | |
|     auto totalSize = channel * inside * outside;
 | |
|     //Exp
 | |
|     auto schedule = ((CPUBackend*)backend())->multiThreadDivide(totalSize);
 | |
|     int sizeDivide = schedule.first;
 | |
|     int scheduleNumber = schedule.second;
 | |
| 
 | |
|     MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
 | |
|         int start = sizeDivide * (int)tId;
 | |
|         int realSize = sizeDivide;
 | |
|         if (tId == scheduleNumber -1 ) {
 | |
|             realSize = totalSize - start;
 | |
|         }
 | |
|         if (realSize > 0) {
 | |
|             MNNExp(dstData + start, dstData + start, realSize);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | |
|     {
 | |
|         const float *srcY  = srcData + tId * stepY;
 | |
|         float *dstY        = dstData + tId * stepY;
 | |
|         float *sumValueSub = sumValue + tId * inside;
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | |
|             memset(sumValueSub, 0, sizeof(float) * inside);
 | |
|             float *dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     sumValueSub[x] += dst[x];
 | |
|                 }
 | |
|             }
 | |
|             dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     dst[x] /= sumValueSub[x];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     auto input           = inputs[0];
 | |
|     const int dimensions = input->buffer().dimensions;
 | |
|     int axis = mAxis;
 | |
|     if (axis < 0) {
 | |
|         axis += dimensions;
 | |
|     }
 | |
| 
 | |
|     const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
 | |
|     mNeedUnpackC4     = layout == MNN_DATA_FORMAT_NC4HW4;
 | |
| 
 | |
|     if (mNeedUnpackC4) {
 | |
|         int totalSize = 1;
 | |
|         for (int i = 1; i < dimensions; ++i) {
 | |
|             totalSize *= input->length(i);
 | |
|         }
 | |
|         mStorage.buffer().dim[0].extent = input->length(0);
 | |
|         mStorage.buffer().dim[1].extent = totalSize;
 | |
|         TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | |
|         mStorage.buffer().dimensions    = 2;
 | |
|         mStorage.buffer().type          = input->getType();
 | |
|         backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     int inside = 1;
 | |
|     int dims   = input->buffer().dimensions;
 | |
|     for (int i = axis + 1; i < dims; ++i) {
 | |
|         inside *= input->length(i);
 | |
|     }
 | |
| 
 | |
|     if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
 | |
|         int threadNum = ((CPUBackend *)backend())->threadNumber();
 | |
| 
 | |
|         mMaxValue.buffer().dim[0].extent = inside * threadNum;
 | |
|         mMaxValue.buffer().dimensions    = 1;
 | |
|         mMaxValue.setType(DataType_DT_FLOAT);
 | |
|         backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
 | |
| 
 | |
|         mSumValue.buffer().dim[0].extent = inside * threadNum;
 | |
|         mSumValue.buffer().dimensions    = 1;
 | |
|         mSumValue.setType(DataType_DT_FLOAT);
 | |
|         backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
 | |
| 
 | |
|         backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
 | |
|         backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     if (mNeedUnpackC4) {
 | |
|         backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     MNN_ASSERT(1 == inputs.size());
 | |
|     MNN_ASSERT(1 == outputs.size());
 | |
|     auto inputTensor        = inputs[0];
 | |
|     auto outputTensor       = outputs[0];
 | |
|     const auto inputDataPtr = inputTensor->host<float>();
 | |
|     auto outputDataPtr      = outputTensor->host<float>();
 | |
|     const int batch         = inputTensor->batch();
 | |
|     const auto dims         = inputTensor->buffer().dimensions;
 | |
|     int axis = mAxis;
 | |
|     if (axis < 0) {
 | |
|         axis += inputTensor->dimensions();
 | |
|     }
 | |
| 
 | |
|     float *tempData = nullptr;
 | |
|     if (mNeedUnpackC4) {
 | |
|         tempData = mStorage.host<float>();
 | |
|     }
 | |
| 
 | |
|     int areaInput = 1;
 | |
|     for (int i = 2; i < dims; ++i) {
 | |
|         areaInput *= inputTensor->length(i);
 | |
|     }
 | |
|     int inside  = 1;
 | |
|     int outside = 1;
 | |
|     int channel = 1;
 | |
|     for (int i = 0; i < axis; ++i) {
 | |
|         outside *= inputTensor->length(i);
 | |
|     }
 | |
|     channel = inputTensor->length(axis);
 | |
|     for (int i = axis + 1; i < dims; ++i) {
 | |
|         inside *= inputTensor->length(i);
 | |
|     }
 | |
| 
 | |
|     int threadNum = ((CPUBackend *)backend())->threadNumber();
 | |
|     if (!mNeedUnpackC4) {
 | |
|         _softmaxCommon(inputDataPtr, outputDataPtr, inside, outside, channel, mMaxValue.host<float>(),
 | |
|                    mSumValue.host<float>(), threadNum);
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     auto outputSize = outputTensor->elementSize();
 | |
|     int batchSize = outputSize / batch;
 | |
|     for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
 | |
|         auto inputData  = inputDataPtr + batchIndex * batchSize;
 | |
|         MNNUnpackC4(outputDataPtr + batchIndex * mStorage.length(1), inputData, areaInput, inputTensor->channel());
 | |
|     }
 | |
|     _softmaxCommon(outputDataPtr, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
 | |
|     for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
 | |
|         auto outputData = outputDataPtr + batchIndex * batchSize;
 | |
|         auto tempPtr = tempData + batchIndex * mStorage.length(1);
 | |
|         MNNPackC4(outputData, tempPtr, areaInput, outputTensor->channel());
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
 | |
|     // nothing to do
 | |
| }
 | |
| 
 | |
| class CPUSoftmaxCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         auto axis = op->main_as_Axis()->axis();
 | |
|         return new CPUSoftmax(backend, axis);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
 | |
| 
 | |
| } // namespace MNN
 |