MNN/source/backend/cpu/CPUUnary.cpp

502 lines
17 KiB
C++

//
// CPUUnary.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUUnary.hpp"
#include <cmath>
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "compute/ConvOpt.h"
#include "compute/CommonOptFunction.h"
#include <MNN/AutoTime.hpp>
#include <vector>
#include <limits>
#include "CPUTanh.hpp"
#include "CPUSigmoid.hpp"
namespace MNN {
CPUUnary::CPUUnary(Backend *b, UnaryOpOperation type) : MNN::Execution(b), mType(type) {
// nothing to do
}
ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == outputs.size());
MNN_ASSERT(inputs[0]->getType() == halide_type_of<float>() || inputs[0]->getType() == halide_type_of<int32_t>());
return NO_ERROR;
}
template <typename Func, typename T>
static ErrorCode _unaryOp(void* inputPtr, void* outputPtr, int elementSize, Backend* bn) {
Func f;
auto backend = [bn]() {
return bn;
};
const T *inputData = (T*)inputPtr;
T *outputData = (T *)outputPtr;
auto numberThread = ((CPUBackend*)bn)->threadNumber();
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
for (int i=tId; i<elementSize; i+=numberThread) {
outputData[i] = f(inputData[i]);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
template <typename T>
struct UnarySquare : std::unary_function<T, T> {
T operator()(const T &x) const {
return x * x;
}
};
template <typename T>
struct UnaryRsqrt : std::unary_function<T, T> {
T operator()(const T &x) const {
return 1.f / sqrt(x);
}
};
template <typename T>
struct UnarySqrt : std::unary_function<T, T> {
T operator()(const T &x) const {
return sqrt(x);
}
};
template <typename T>
struct UnaryNeg {
T operator()(const T &x) const {
return -x;
}
};
template <typename T>
struct UnaryExp : std::unary_function<T, T> {
T operator()(const T &x) const {
return exp(x);
}
};
template <typename T>
struct UnaryAbs : std::unary_function<T, T> {
T operator()(const T &x) const {
return abs(x);
}
};
template <typename T>
struct UnaryCeil : std::unary_function<T, T> {
T operator()(const T &x) const {
return ceil(x);
}
};
template <typename T>
struct UnaryRecipocal : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)1 / (x);
}
};
template <typename T>
struct UnaryLog1p : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)log((T)1 + (x));
}
};
template <typename T>
struct UnaryLog : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)log((T)(x));
}
};
template <typename T>
struct UnaryCos : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)cosf((T)(x));
}
};
template <typename T>
struct UnarySin : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)sinf((T)(x));
}
};
template <typename T>
struct UnaryTan : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)tanf((T)(x));
}
};
template <typename T>
struct UnaryATan : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)atanf((T)(x));
}
};
template <typename T>
struct UnaryFloor : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)floor((T)(x));
}
};
template <typename T>
struct UnarySign : std::unary_function<T, T> {
T operator()(const T &x) const {
if (x > 0) {
return 1;
}
if (x < 0) {
return -1;
}
return 0;
}
};
template <typename T>
struct UnaryBNLL : std::unary_function<T, T> {
T operator()(const T &x) const {
float r = x > 0 ? (x + log(1. + exp(-x))) : log(1. + exp(x));
return (T)r;
}
};
template <typename T>
struct UnaryAcosh : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)acoshf((T)(x));
}
};
template <typename T>
struct UnarySinh : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)sinhf((T)(x));
}
};
template <typename T>
struct UnaryAsinh : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)asinhf((T)(x));
}
};
template <typename T>
struct UnaryAtanh : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)atanhf((T)(x));
}
};
template <typename T>
struct UnaryRound : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)roundf((T)(x));
}
};
template <typename T>
struct UnaryCosh : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)coshf((T)(x));
}
};
template <typename T>
T evalPoly(T x, const std::vector<float> kErfTCoefficient) {
auto poly = 0.0f;
for (auto c : kErfTCoefficient) {
poly = poly * x + c;
}
return poly;
}
template <typename T>
T erfImpl(T x) {
// Coefficients for by erf(f32), from Cephes. tensorflow
static const std::vector<float> kErfTCoefficient {
+7.853861353153693E-5f, -8.010193625184903E-4f, +5.188327685732524E-3f,
-2.685381193529856E-2f, +1.128358514861418E-1f, -3.761262582423300E-1f,
+1.128379165726710E+0f,
};
return x * evalPoly(x * x, kErfTCoefficient);
}
template <typename T>
T erfcImpl(T x) {
// Coefficients for erfc(f32), from Cephes. tensorflow
const double kMaxlog = 88.72283905206835;
// erfc(x) = exp(-x^2) P(1/x^2), 1 < x < 2
static const std::vector<float> kErfcPCoefficient{
+2.326819970068386E-2f, -1.387039388740657E-1f, +3.687424674597105E-1f,
-5.824733027278666E-1f, +6.210004621745983E-1f, -4.944515323274145E-1f,
+3.404879937665872E-1f, -2.741127028184656E-1f, +5.638259427386472E-1f,
};
// erfc(x) = exp(-x^2) R(1/x^2), 2 <= x < kMaxlog
static const std::vector<float> kErfcRCoefficient{
-1.047766399936249E+1f, +1.297719955372516E+1f, -7.495518717768503E+0f,
+2.921019019210786E+0f, -1.015265279202700E+0f, +4.218463358204948E-1f,
-2.820767439740514E-1f, +5.641895067754075E-1f,
};
float absX = fabsf(x);
float z = expf(-x * x);
float q = 1.0 / absX;
float y = q * q;
float p;
if (absX < 2.0f) {
p = evalPoly(y, kErfcPCoefficient);
} else {
p = evalPoly(y, kErfcRCoefficient);
}
y = z * q * p;
float yClamp;
if (z < -kMaxlog) {
yClamp = 0.0f;
} else {
yClamp = y;
}
if (x < 0) {
return T(2.0f - yClamp);
} else {
return T(yClamp);
}
}
template <typename T>
struct UnaryErf : std::unary_function<T, T> {
T operator()(const T &x) const {
if (abs(x) < T(1.)) {
return erfImpl(x);
} else {
return T(1.) - erfcImpl(x);
}
}
};
template <typename T>
struct UnaryErfc : std::unary_function<T, T> {
T operator()(const T &x) const {
if (abs(x) > T(1.)) {
return erfcImpl(x);
} else {
return T(1.) - erfImpl(x);
}
}
};
template <typename T>
struct UnaryErfinv : std::unary_function<T, T> {
// referenced from tensorflow
const int kDegree = 9;
const std::vector<float> w_less_than_5_constants = {
2.81022636e-08f, 3.43273939e-07f, -3.5233877e-06f,
-4.39150654e-06f, 0.00021858087f, -0.00125372503f,
-0.00417768164f, 0.246640727f, 1.50140941f};
const std::vector<float> w_greater_than_5_constants = {
-0.000200214257f, 0.000100950558f, 0.00134934322f,
-0.00367342844f, 0.00573950773f, -0.0076224613f,
0.00943887047f, 1.00167406f, 2.83297682f};
T operator()(const T &x) const {
// Compute logarithm of (1+arg) using log1p(arg) which is more precise than
// log(1+arg) when arg is close to zero. For more details, see
// https://en.cppreference.com/w/cpp/numeric/math/log1p
auto w = -log1p(-x * x);
bool lt = (w < 5.0);
auto coefficient = [&](int i) {
if (lt) {
return w_less_than_5_constants[i];
} else {
return w_greater_than_5_constants[i];
}
};
if (lt) {
w = w - 2.5;
} else {
w = sqrt(w) - 3.0;
}
auto p = coefficient(0);
for (int i = 1; i < kDegree; i++) {
p = coefficient(i) + p * w;
}
auto result = p * x;
if (fabsf(fabsf(x) - 1) < 1e-8) {
return std::numeric_limits<float>::infinity();
} else {
return result;
}
}
};
template <typename T>
struct UnaryExpm1 : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)expm1((T)(x));
}
};
template <typename T>
struct UnaryAsin : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)asin((T)(x));
}
};
template <typename T>
struct UnaryAcos : std::unary_function<T, T> {
T operator()(const T &x) const {
return (T)acos((T)(x));
}
};
ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto dtype = input->getType().code;
if (dtype == halide_type_int) {
switch (mType) {
case UnaryOpOperation_ABS:
return _unaryOp<UnaryAbs<int32_t>, int32_t>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_NEG:
return _unaryOp<UnaryNeg<int32_t>, int32_t>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_SQUARE:
return _unaryOp<UnarySquare<int32_t>, int32_t>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
default:
MNN_ERROR("Int-Unary not support %d\n", mType);
break;
}
return NO_ERROR;
}
auto size = input->elementSize();
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
auto inputPtr = input->host<float>();
auto outputPtr = output->host<float>();
switch (mType) {
case UnaryOpOperation_ABS: {
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
MNNReluWithSlopeCommon(outputPtr + start, inputPtr + start, realSize, -1.0f);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
case UnaryOpOperation_SQUARE: {
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
MNNMatrixProdCommon(outputPtr + start, inputPtr + start, inputPtr + start, realSize, 0, 0, 0, 1);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
case UnaryOpOperation_RSQRT:
return _unaryOp<UnaryRsqrt<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_NEG: {
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
MNNScaleAndAddBiasScalar(outputPtr + start, inputPtr + start, 0.0f, -1.0f, realSize);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
case UnaryOpOperation_EXP:
return _unaryOp<UnaryExp<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_COS:
return _unaryOp<UnaryCos<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_SIN:
return _unaryOp<UnarySin<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_TAN:
return _unaryOp<UnaryTan<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ATAN:
return _unaryOp<UnaryATan<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_SQRT:
return _unaryOp<UnarySqrt<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_CEIL:
return _unaryOp<UnaryCeil<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_RECIPROCAL:
return _unaryOp<UnaryRecipocal<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_LOG1P:
return _unaryOp<UnaryLog1p<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_LOG:
return _unaryOp<UnaryLog<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_FLOOR:
return _unaryOp<UnaryFloor<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_BNLL:
return _unaryOp<UnaryBNLL<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ACOSH:
return _unaryOp<UnaryAcosh<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_SINH:
return _unaryOp<UnarySinh<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ASINH:
return _unaryOp<UnaryAsinh<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ATANH:
return _unaryOp<UnaryAtanh<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_SIGN:
return _unaryOp<UnarySign<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ROUND:
return _unaryOp<UnaryRound<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_COSH:
return _unaryOp<UnaryCosh<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ERF:
return _unaryOp<UnaryErf<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ERFC:
return _unaryOp<UnaryErfc<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ERFINV:
return _unaryOp<UnaryErfinv<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_EXPM1:
return _unaryOp<UnaryExpm1<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ASIN:
return _unaryOp<UnaryAsin<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
case UnaryOpOperation_ACOS:
return _unaryOp<UnaryAcos<float>, float>(input->host<void>(), output->host<void>(), input->elementSize(), backend());
default:
MNN_ASSERT(false);
break;
}
return NO_ERROR;
}
class CPUUnaryCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto opType = op->main_as_UnaryOp()->opType();
if (UnaryOpOperation_SIGMOID == opType) {
return new CPUSigmoid(backend);
}
if (UnaryOpOperation_TANH == opType) {
return new CPUTanh(backend);
}
return new CPUUnary(backend, op->main_as_UnaryOp()->opType());
}
};
REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
} // namespace MNN