mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						||
//  ShapeQuantizedAvgPool.cpp
 | 
						||
//  MNN
 | 
						||
//
 | 
						||
//  Created by MNN on 2019/01/10.
 | 
						||
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						||
//
 | 
						||
#ifdef MNN_SUPPORT_TFLITE_QUAN
 | 
						||
#include <math.h>
 | 
						||
#include "Macro.h"
 | 
						||
#include "SizeComputer.hpp"
 | 
						||
 | 
						||
namespace MNN {
 | 
						||
class QuantizedAvgPoolComputer : public SizeComputer {
 | 
						||
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						||
                               const std::vector<Tensor*>& outputs) const override {
 | 
						||
        auto layer = op->main_as_QuantizedAvgPool();
 | 
						||
 | 
						||
        MNN_ASSERT(layer->strideX() == layer->strideY());
 | 
						||
 | 
						||
        int kernel_width  = layer->kernelX();
 | 
						||
        int kernel_height = layer->kernelY();
 | 
						||
 | 
						||
        int output_width  = 1;
 | 
						||
        int output_height = 1;
 | 
						||
 | 
						||
        auto input = inputs[0];
 | 
						||
 | 
						||
        if (layer->padType() == PoolPadType_SAME) {                                   // Tensorflow padding mode SAME
 | 
						||
            output_width  = ceil((float)input->width() / (float)layer->strideX());  // NHWC for tensorflow
 | 
						||
            output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
 | 
						||
        } else if (layer->padType() == PoolPadType_VALID) {                           // Tensorflow padding mode VALID
 | 
						||
            output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | 
						||
            output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | 
						||
        } else {
 | 
						||
            MNN_ASSERT(false); // unsupported type
 | 
						||
        }
 | 
						||
        
 | 
						||
        // output:NHWC MNN: nchw
 | 
						||
        auto& outputBuffer         = outputs[0]->buffer();
 | 
						||
        outputBuffer.dimensions    = input->buffer().dimensions;
 | 
						||
        outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | 
						||
        
 | 
						||
        outputBuffer.dim[2].extent = output_height;
 | 
						||
        outputBuffer.dim[3].extent = output_width;
 | 
						||
        outputBuffer.dim[1].extent = input->buffer().dim[1].extent;
 | 
						||
        
 | 
						||
        if (3 == inputs.size()) {
 | 
						||
            auto output_min          = outputs[1]->buffer();
 | 
						||
            output_min.dimensions    = 0;
 | 
						||
            output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
 | 
						||
            1;
 | 
						||
            
 | 
						||
            auto output_max          = outputs[2]->buffer();
 | 
						||
            output_max.dimensions    = 0;
 | 
						||
            output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
 | 
						||
            1;
 | 
						||
            outputs[0]->setType(DataType_DT_INT32);
 | 
						||
        } else {
 | 
						||
            outputs[0]->setType(DataType_DT_UINT8);
 | 
						||
        }
 | 
						||
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						||
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
};
 | 
						||
 | 
						||
REGISTER_SHAPE(QuantizedAvgPoolComputer, OpType_QuantizedAvgPool);
 | 
						||
} // namespace MNN
 | 
						||
#endif
 |