mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			61 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeTensorConvert.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "Macro.h"
 | 
						|
#include "SizeComputer.hpp"
 | 
						|
#include "TensorUtils.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
class TensorConvertSizeComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        auto& ib = inputs[0]->buffer();
 | 
						|
        auto& ob = outputs[0]->buffer();
 | 
						|
        if (ib.dimensions <= 1) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        auto info                                             = op->main_as_TensorConvertInfo();
 | 
						|
        auto sourceFmt                                        = info->source();
 | 
						|
        auto destFmt                                          = info->dest();
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = destFmt;
 | 
						|
        ob.type                                               = ib.type;
 | 
						|
        ob.dimensions                                         = ib.dimensions;
 | 
						|
        
 | 
						|
        if ((ib.dimensions == 2) ||
 | 
						|
            (sourceFmt == MNN_DATA_FORMAT_NC4HW4 && destFmt == MNN_DATA_FORMAT_NCHW) ||
 | 
						|
            (sourceFmt == MNN_DATA_FORMAT_NCHW && destFmt == MNN_DATA_FORMAT_NC4HW4)) {
 | 
						|
            
 | 
						|
            for (int i = 0; i < ib.dimensions; ++i) {
 | 
						|
                ob.dim[i].extent = ib.dim[i].extent;
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        
 | 
						|
        ob.dim[0].extent = ib.dim[0].extent;
 | 
						|
        if (sourceFmt == MNN_DATA_FORMAT_NC4HW4 && destFmt == MNN_DATA_FORMAT_NHWC) {
 | 
						|
            ob.dim[ob.dimensions - 1].extent = ib.dim[1].extent;
 | 
						|
            for (int i = 1; i < ob.dimensions - 1; ++i) {
 | 
						|
                ob.dim[i].extent = ib.dim[i + 1].extent;
 | 
						|
            }
 | 
						|
        } else if (destFmt == MNN_DATA_FORMAT_NC4HW4 && sourceFmt == MNN_DATA_FORMAT_NHWC) {
 | 
						|
            ob.dim[1].extent = ib.dim[ib.dimensions - 1].extent;
 | 
						|
            for (int i = 2; i < ob.dimensions; ++i) {
 | 
						|
                ob.dim[i].extent = ib.dim[i - 1].extent;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(TensorConvertSizeComputer, OpType_ConvertTensor);
 | 
						|
} // namespace MNN
 |