mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeConvolution3D.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| class Convolution3DSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         
 | |
|         auto layer        = op->main_as_Convolution3D()->common();
 | |
|         for (auto stride: *layer->strides()) {
 | |
|             MNN_ASSERT(stride == 1);
 | |
|         }
 | |
|         for (auto dilate: *layer->dilates()) {
 | |
|             MNN_ASSERT(dilate == 1);
 | |
|         }
 | |
|         
 | |
|         auto input = inputs[0];
 | |
|         if (input->buffer().dimensions != 5) {
 | |
|             return false;
 | |
|         }
 | |
|         
 | |
|         auto& outputBuffer         = outputs[0]->buffer();
 | |
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | |
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | |
|         outputBuffer.dim[1].extent = layer->outputCount();
 | |
|         
 | |
|         for (int i = 0; i < 3; ++i) {
 | |
|             const int inputLength = input->length(i + 2), stride = (*layer->strides())[i];
 | |
|             if (inputLength <= 0) {
 | |
|                 return false;
 | |
|             }
 | |
|             int outputLength;
 | |
|             if (layer->padMode() == PadMode_SAME) {
 | |
|                 outputLength = UP_DIV(inputLength, stride);
 | |
|             } else {
 | |
|                 const int pad = (*layer->pads())[i], kernel = (*layer->kernels())[i], dialate = (*layer->dilates())[i];
 | |
|                 const int dialatedKernel = (kernel - 1) * dialate + 1;
 | |
|                 outputLength = (inputLength + 2 * pad - dialatedKernel) / stride + 1;
 | |
|             }
 | |
|             outputBuffer.dim[i + 2].extent = outputLength;
 | |
|         }
 | |
|         
 | |
|         outputBuffer.type = input->getType();
 | |
| 
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto layer = op->main_as_Convolution3D()->common();
 | |
|         int oSize = outputs[0]->length(1);
 | |
|         float flopsPerElement = inputs[0]->length(1);
 | |
|         for (int i = 0; i < 3; ++i) {
 | |
|             flopsPerElement *= (*layer->kernels())[i];
 | |
|             oSize *= outputs[0]->length(i + 2);
 | |
|         }
 | |
|         float flops = oSize * flopsPerElement / FLOPS_M;
 | |
| 
 | |
|         return flops;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(Convolution3DSizeComputer, OpType_Convolution3D);
 | |
| } // namespace MNN
 |