mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeLSTM.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| // Size Computer
 | |
| class LSTMComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         MNN_ASSERT(2 >= inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         // copy dims
 | |
|         auto &input  = inputs[0]->buffer();
 | |
|         auto &output = outputs[0]->buffer();
 | |
|         memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
 | |
| 
 | |
|         auto LSTM            = op->main_as_LSTM();
 | |
|         output.dimensions = 4;
 | |
|         output.dim[3].extent = LSTM->outputCount();
 | |
|         output.dim[2].extent = 1;
 | |
|         output.type = halide_type_of<float>();
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(LSTMComputer, OpType_LSTM);
 | |
| } // namespace MNN
 |