mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			75 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | ||
| //  ShapeTFQuantizedConv2D.cpp
 | ||
| //  MNN
 | ||
| //
 | ||
| //  Created by MNN on 2019/01/10.
 | ||
| //  Copyright © 2018, Alibaba Group Holding Limited
 | ||
| //
 | ||
| #ifdef MNN_SUPPORT_TFLITE_QUAN
 | ||
| #include <math.h>
 | ||
| #include "core/Macro.h"
 | ||
| #include "core/SizeComputer.hpp"
 | ||
| 
 | ||
| namespace MNN {
 | ||
| class TFQuantizedConv2DComputer : public SizeComputer {
 | ||
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | ||
|                                const std::vector<Tensor*>& outputs) const override {
 | ||
|         auto layer = op->main_as_TfQuantizedConv2D()->common();
 | ||
| 
 | ||
|         MNN_ASSERT(layer->dilateX() == 1);
 | ||
|         MNN_ASSERT(layer->dilateY() == 1);
 | ||
|         MNN_ASSERT(layer->strideX() == layer->strideY());
 | ||
| 
 | ||
|         int kernel_width  = layer->dilateX() * (layer->kernelX() - 1) + 1;
 | ||
|         int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1;
 | ||
| 
 | ||
|         int output_width  = 1;
 | ||
|         int output_height = 1;
 | ||
| 
 | ||
|         auto input = inputs[0];
 | ||
| 
 | ||
|         if (layer->padMode() == PadMode_SAME) {                                     // Tensorflow padding mode SAME
 | ||
|             output_width  = ceil((float)input->width() / (float)layer->strideX());  // NHWC for tensorflow
 | ||
|             output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
 | ||
|         } else if (layer->padMode() == PadMode_VALID) {                             // Tensorflow padding mode VALID
 | ||
|             output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | ||
|             output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | ||
|         } else {
 | ||
|             MNN_ASSERT(false); // unsupported type
 | ||
|         }
 | ||
| 
 | ||
|         // output:NCHW
 | ||
|         auto& outputBuffer         = outputs[0]->buffer();
 | ||
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | ||
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | ||
|         outputBuffer.dim[1].extent = layer->outputCount();
 | ||
|         outputBuffer.dim[2].extent = output_height;
 | ||
|         outputBuffer.dim[3].extent = output_width;
 | ||
| 
 | ||
|         outputs[0]->buffer().type = halide_type_of<uint8_t>();
 | ||
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | ||
|                                  const std::vector<Tensor*>& outputs) const override {
 | ||
|         auto layer = op->main_as_TfQuantizedConv2D()->common();
 | ||
|         auto kw    = layer->kernelX();
 | ||
|         auto kh    = layer->kernelY();
 | ||
|         int group  = 1;
 | ||
|         if (op->type() == OpType_QuantizedDepthwiseConv2D) {
 | ||
|             group = inputs[0]->channel();
 | ||
|         }
 | ||
|         auto ic    = inputs[0]->channel();
 | ||
|         auto oc    = outputs[0]->channel();
 | ||
|         auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
 | ||
| 
 | ||
|         return (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M;
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_TfQuantizedConv2D);
 | ||
| REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_QuantizedDepthwiseConv2D);
 | ||
| } // namespace MNN
 | ||
| #endif
 |