MNN/source/shape/ShapeTFQuantizedConv2D.cpp

75 lines
3.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// ShapeTFQuantizedConv2D.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_SUPPORT_TFLITE_QUAN
#include <math.h>
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
namespace MNN {
class TFQuantizedConv2DComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_TfQuantizedConv2D()->common();
MNN_ASSERT(layer->dilateX() == 1);
MNN_ASSERT(layer->dilateY() == 1);
MNN_ASSERT(layer->strideX() == layer->strideY());
int kernel_width = layer->dilateX() * (layer->kernelX() - 1) + 1;
int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1;
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (layer->padMode() == PadMode_SAME) { // Tensorflow padding mode SAME
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
} else if (layer->padMode() == PadMode_VALID) { // Tensorflow padding mode VALID
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
} else {
MNN_ASSERT(false); // unsupported type
}
// outputNCHW
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[1].extent = layer->outputCount();
outputBuffer.dim[2].extent = output_height;
outputBuffer.dim[3].extent = output_width;
outputs[0]->buffer().type = halide_type_of<uint8_t>();
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_TfQuantizedConv2D()->common();
auto kw = layer->kernelX();
auto kh = layer->kernelY();
int group = 1;
if (op->type() == OpType_QuantizedDepthwiseConv2D) {
group = inputs[0]->channel();
}
auto ic = inputs[0]->channel();
auto oc = outputs[0]->channel();
auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
return (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M;
}
};
REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_TfQuantizedConv2D);
REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_QuantizedDepthwiseConv2D);
} // namespace MNN
#endif