mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			448 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
| import math
 | |
| import torch
 | |
| from typing import Optional, Tuple
 | |
| 
 | |
| from .model_mapper import ModelMapper
 | |
| from .custom_op import FusedAttention, MoE
 | |
| 
 | |
| class Embedding(torch.nn.Module):
 | |
|     def __init__(self, embed, config):
 | |
|         super().__init__()
 | |
|         self.hidden_size = config.hidden_size
 | |
|         self.embed = embed
 | |
|         self.embed_scale = 1.0
 | |
|         if config.model_type == 'gemma2':
 | |
|             self.embed_scale = self.hidden_size**0.5
 | |
|         if hasattr(embed, 'embed_scale'):
 | |
|             self.embed_scale = embed.embed_scale
 | |
| 
 | |
|     def forward(self, input_ids):
 | |
|         inputs_embeds = self.embed(input_ids).view(-1, 1, self.hidden_size)
 | |
|         return inputs_embeds
 | |
| 
 | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | |
|     batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | |
|     if n_rep == 1:
 | |
|         return hidden_states
 | |
|     hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
 | |
|     return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
 | |
| 
 | |
| class Attention(torch.nn.Module):
 | |
|     def __init__(self, attn, layer_id, config):
 | |
|         super().__init__()
 | |
|         self.export_fused_attn = False
 | |
|         if config is None: return
 | |
|         self.config = config
 | |
|         self.fused_attn = FusedAttention(config.hidden_size, f'/layers.{layer_id}/self_attn/FusedAttention')
 | |
|         self.layer_id = layer_id
 | |
|         self.hidden_size = config.hidden_size
 | |
|         self.head_dim = config.head_dim
 | |
|         if isinstance(config.num_attention_heads, list):
 | |
|             self.num_heads = config.num_attention_heads[layer_id]
 | |
|             self.num_key_value_heads = config.num_key_value_heads[layer_id]
 | |
|         else:
 | |
|             self.head_dim = config.head_dim
 | |
|             self.num_heads = config.num_attention_heads
 | |
|             self.num_key_value_heads = config.num_key_value_heads
 | |
|         self.num_key_value_groups = self.num_heads // self.num_key_value_heads
 | |
|         self.rotary = config.rotary
 | |
| 
 | |
|         ModelMapper.do_map(self, attn, config.model_map['attention'])
 | |
| 
 | |
|         if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
 | |
|             # split qkv linear to q, k, v
 | |
|             split_sizes = [self.hidden_size] * 3
 | |
|             if self.qkv_proj.weight.shape[0] != self.hidden_size * 3:
 | |
|                 # M/GQA
 | |
|                 split_sizes = [
 | |
|                     self.num_heads * self.head_dim,           # q_size
 | |
|                     self.num_key_value_heads * self.head_dim, # k_size
 | |
|                     self.num_key_value_heads * self.head_dim  # v_size
 | |
|                 ]
 | |
| 
 | |
|             self.q_proj = torch.nn.Linear(self.hidden_size, split_sizes[0])
 | |
|             self.k_proj = torch.nn.Linear(self.hidden_size, split_sizes[1])
 | |
|             self.v_proj = torch.nn.Linear(self.hidden_size, split_sizes[2])
 | |
|             if config.model_type == 'chatglm':
 | |
|                 # chatglm-6b
 | |
|                 qkv_weight = self.qkv_proj.weight.data.view(self.num_heads, 3, self.head_dim, self.hidden_size)
 | |
|                 self.q_proj.weight.data = qkv_weight[:, 0, :, :].reshape(self.hidden_size, self.hidden_size)
 | |
|                 self.k_proj.weight.data = qkv_weight[:, 1, :, :].reshape(self.hidden_size, self.hidden_size)
 | |
|                 self.v_proj.weight.data = qkv_weight[:, 2, :, :].reshape(self.hidden_size, self.hidden_size)
 | |
|                 qkv_bias = self.qkv_proj.bias.data.view(self.num_heads, 3, self.head_dim)
 | |
|                 self.q_proj.bias.data = qkv_bias[:, 0, :].reshape(self.hidden_size)
 | |
|                 self.k_proj.bias.data = qkv_bias[:, 1, :].reshape(self.hidden_size)
 | |
|                 self.v_proj.bias.data = qkv_bias[:, 2, :].reshape(self.hidden_size)
 | |
|             else:
 | |
|                 # other
 | |
|                 qw, kw, vw = torch.split(self.qkv_proj.weight, split_sizes)
 | |
|                 self.q_proj.weight.data = qw
 | |
|                 self.k_proj.weight.data = kw
 | |
|                 self.v_proj.weight.data = vw
 | |
|                 if self.qkv_proj.bias is not None:
 | |
|                     qb, kb, vb = torch.split(self.qkv_proj.bias, split_sizes)
 | |
|                     self.q_proj.bias.data = qb
 | |
|                     self.k_proj.bias.data = kb
 | |
|                     self.v_proj.bias.data = vb
 | |
|                 else:
 | |
|                     data_type = self.q_proj.weight.dtype
 | |
|                     self.q_proj.bias.data = torch.zeros(split_sizes[0], dtype=data_type)
 | |
|                     self.k_proj.bias.data = torch.zeros(split_sizes[1], dtype=data_type)
 | |
|                     self.v_proj.bias.data = torch.zeros(split_sizes[2], dtype=data_type)
 | |
|             self.q_proj.weight.requires_grad = False
 | |
|             self.k_proj.weight.requires_grad = False
 | |
|             self.v_proj.weight.requires_grad = False
 | |
|             self.q_proj.bias.requires_grad = False
 | |
|             self.k_proj.bias.requires_grad = False
 | |
|             self.v_proj.bias.requires_grad = False
 | |
| 
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         hidden_states: torch.Tensor,
 | |
|         attention_mask: Optional[torch.Tensor] = None,
 | |
|         past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | |
|         rotary_pos_emb: Optional[torch.Tensor] = None,
 | |
|         cross_attention_states: Optional[torch.Tensor] = None,
 | |
|     ) -> Tuple[torch.Tensor, torch.Tensor]:
 | |
|         bsz, q_len, _ = hidden_states.size()
 | |
|         query_states = self.q_proj(hidden_states)
 | |
|         if cross_attention_states is not None:
 | |
|             hidden_states = cross_attention_states
 | |
|         key_states = self.k_proj(hidden_states)
 | |
|         value_states = self.v_proj(hidden_states)
 | |
|         query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
 | |
|         key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
 | |
|         value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
 | |
|         # openelm model has qk_norm
 | |
|         if hasattr(self, 'q_norm') and self.q_norm is not None and \
 | |
|            hasattr(self, 'k_norm') and self.k_norm is not None :
 | |
|             query_states = self.q_norm(query_states)
 | |
|             key_states = self.k_norm(key_states)
 | |
| 
 | |
|         kv_seq_len = key_states.shape[1]
 | |
|         if past_key_value is not None:
 | |
|             kv_seq_len += past_key_value[0].shape[1]
 | |
| 
 | |
|         # rope
 | |
|         if self.rotary is not None:
 | |
|             cos, sin = rotary_pos_emb[0], rotary_pos_emb[1]
 | |
|             query_states = self.rotary.apply_rotary_pos(query_states, cos, sin)
 | |
|             key_states = self.rotary.apply_rotary_pos(key_states, cos, sin)
 | |
| 
 | |
|         if self.export_fused_attn:
 | |
|             attn_output = self.fused_attn(query_states, key_states, value_states, attention_mask)
 | |
|             attn_output = self.o_proj(attn_output)
 | |
|             return attn_output, past_key_value
 | |
| 
 | |
|         # kv cache
 | |
|         if past_key_value is not None:
 | |
|             past_key, past_value = past_key_value[0], past_key_value[1]
 | |
|             key_states = torch.cat((past_key, key_states), dim=1)
 | |
|             value_states = torch.cat((past_value, value_states), dim=1)
 | |
| 
 | |
|         past_key_value = torch.stack((key_states, value_states))
 | |
|         query_states = query_states.transpose(1, 2)
 | |
|         key_states = key_states.permute([0, 2, 3, 1])
 | |
|         value_states = value_states.transpose(1, 2)
 | |
|         # repeat k/v heads if n_kv_heads < n_heads
 | |
|         key_states = repeat_kv(key_states, self.num_key_value_groups)
 | |
|         value_states = repeat_kv(value_states, self.num_key_value_groups)
 | |
|         #------- attention ----------
 | |
|         # query_states @ key_states
 | |
|         attn_weights = torch.matmul(query_states, key_states) / math.sqrt(self.head_dim)
 | |
|         # attention_mask
 | |
|         if attention_mask.dtype in (torch.bool, torch.int32):
 | |
|             # chatglm
 | |
|             attn_weights.masked_fill_(attention_mask, -10000.0)
 | |
|         else:
 | |
|             attn_weights = attn_weights + attention_mask
 | |
|         # upcast softmax to fp32
 | |
|         attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | |
|         # attn_weights @ value_states
 | |
|         attn_output = torch.matmul(attn_weights, value_states)
 | |
| 
 | |
|         attn_output = attn_output.transpose(1, 2).contiguous()
 | |
|         attn_output = attn_output.reshape(bsz, q_len, -1)
 | |
|         attn_output = self.o_proj(attn_output)
 | |
|         return attn_output, past_key_value
 | |
| 
 | |
| def rotate_half(x):
 | |
|     x1 = x[..., : x.shape[-1] // 2]
 | |
|     x2 = x[..., x.shape[-1] // 2 :]
 | |
|     return torch.cat((-x2, x1), dim=-1)
 | |
| 
 | |
| class Rotary(torch.nn.Module):
 | |
|     def __init__(self, config):
 | |
|         super().__init__()
 | |
|         if config is None: return
 | |
|         self.rope_theta = config.rope_theta
 | |
|         self.rope_ratio = config.rope_ratio
 | |
|         self.rope_theta *= self.rope_ratio
 | |
|         self.rotary_dim = config.head_dim
 | |
|         self.model_type = config.model_type
 | |
|         if hasattr(config, 'rotary_dim'):
 | |
|             self.rotary_dim = config.rotary_dim
 | |
|         if self.model_type == 'chatglm':
 | |
|             self.rotary_dim = config.head_dim // 2
 | |
|         self.theta = 1.0 / (self.rope_theta ** (torch.arange(0, self.rotary_dim, 2, dtype=torch.float32) / self.rotary_dim))
 | |
|         if hasattr(config, 'rope_scaling') and config.rope_scaling is not None:
 | |
|             self.mrope_section = config.rope_scaling['mrope_section']
 | |
|             self.theta_sections = self.theta.unsqueeze(0).split(self.mrope_section, dim=-1)
 | |
|         else:
 | |
|             self.mrope_section = None
 | |
|             self.theta_sections = None
 | |
| 
 | |
|     def forward(self, position_ids):
 | |
|         if self.theta_sections is not None:
 | |
|             return self.mrope_forward(position_ids)
 | |
|         position_ids = position_ids.float().reshape(-1, 1)
 | |
|         idx_theta = position_ids * self.theta
 | |
|         rotary_pos_emb = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)])
 | |
|         if self.model_type != 'chatglm2':
 | |
|             rotary_pos_emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
 | |
|         rotary_pos_emb = rotary_pos_emb.unsqueeze(2).unsqueeze(1)
 | |
|         return rotary_pos_emb
 | |
| 
 | |
|     def mrope_forward(self, position_ids):
 | |
|         position_ids = position_ids.float().unsqueeze(-1)
 | |
|         idx_theta = torch.concat([
 | |
|             position_ids[0] * self.theta_sections[0],
 | |
|             position_ids[1] * self.theta_sections[1],
 | |
|             position_ids[2] * self.theta_sections[2]
 | |
|         ], dim=-1)
 | |
|         rotary_pos_emb = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)])
 | |
|         rotary_pos_emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
 | |
|         rotary_pos_emb = rotary_pos_emb.unsqueeze(2).unsqueeze(1)
 | |
|         return rotary_pos_emb
 | |
| 
 | |
|     def apply_rotary_pos(self, x, cos, sin):
 | |
|         if self.model_type == 'chatglm':
 | |
|             return self.chatglm_rotary_pos(x, cos, sin)
 | |
|         if self.model_type == 'chatglm2':
 | |
|             return self.chatglm2_rotary_pos(x, cos, sin)
 | |
|         if self.model_type == 'phi-msft':
 | |
|             return self.phi_rotary_pos(x, cos, sin)
 | |
|         return self.llama_rotary_pos(x, cos, sin)
 | |
| 
 | |
|     def llama_rotary_pos(self, x, cos, sin):
 | |
|         x = (x * cos) + (rotate_half(x) * sin)
 | |
|         return x
 | |
| 
 | |
|     def phi_rotary_pos(self, x, cos, sin):
 | |
|         x, x_pass = x[..., :self.rotary_dim], x[..., self.rotary_dim:]
 | |
|         x = (x * cos) + (rotate_half(x) * sin)
 | |
|         return torch.cat((x, x_pass), dim=-1)
 | |
| 
 | |
|     def chatglm2_rotary_pos(self, x, cos, sin):
 | |
|         x, x_pass = x[..., :self.rotary_dim], x[..., self.rotary_dim:]
 | |
|         b, s, n, h = x.shape
 | |
|         xshaped = x.view(b, s, n, h//2, 2)
 | |
|         x = torch.concat(
 | |
|             [
 | |
|                 xshaped[..., 0] * cos - xshaped[..., 1] * sin,
 | |
|                 xshaped[..., 1] * cos + xshaped[..., 0] * sin,
 | |
|             ],
 | |
|             -1,
 | |
|         )
 | |
|         return torch.cat((x, x_pass), dim=-1)
 | |
| 
 | |
|     def chatglm_rotary_pos(self, x, cos, sin):
 | |
|         seq = x.shape[1]
 | |
|         x1, x2 = x[..., :self.rotary_dim], x[..., self.rotary_dim:]
 | |
|         cos1, sin1 = cos[:, :seq, ...], sin[:, :seq, ...]
 | |
|         cos2, sin2 = cos[:, seq:, ...], sin[:, seq:, ...]
 | |
|         x1 = (x1 * cos1) + (rotate_half(x1) * sin1)
 | |
|         x2 = (x2 * cos2) + (rotate_half(x2) * sin2)
 | |
|         return torch.cat((x1, x2), dim=-1)
 | |
| 
 | |
| class VisionRotary(Rotary):
 | |
|     def __init__(self, config):
 | |
|         super().__init__(config)
 | |
| 
 | |
|     # support [h_pos, w_pos]
 | |
|     def forward(self, position_ids):
 | |
|         # [2, patch_len, 1]
 | |
|         position_ids = position_ids.float().unsqueeze(-1)
 | |
|         idx_theta = position_ids * self.theta
 | |
|         # [patch_len, rotary_dim]
 | |
|         idx_theta = idx_theta.permute(1, 0, 2).reshape(-1, self.rotary_dim)
 | |
|         rotary_pos_emb = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)])
 | |
|         rotary_pos_emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
 | |
|         rotary_pos_emb = rotary_pos_emb.unsqueeze(2).unsqueeze(1)
 | |
|         return rotary_pos_emb
 | |
| 
 | |
| class Mlp(torch.nn.Module):
 | |
|     def __init__(self, mlp, config, layer_id):
 | |
|         super().__init__()
 | |
|         self.layer_id = layer_id
 | |
|         ModelMapper.do_map(self, mlp, config.model_map['mlp'])
 | |
|         self.is_moe = hasattr(self, 'experts')
 | |
|         self.export_moe = False
 | |
|         self.custom_moe = MoE(self.num_experts, self.top_k, layer_id)
 | |
| 
 | |
|     def forward(self, hidden_states: torch.Tensor):
 | |
|         if not self.is_moe:
 | |
|             # general Mlp
 | |
|             return self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
 | |
| 
 | |
|         # MoE Mlp
 | |
|         batch_size, sequence_length, hidden_dim = hidden_states.shape
 | |
|         hidden_states = hidden_states.view(-1, hidden_dim)
 | |
|         # router_logits: (batch * sequence_length, n_experts)
 | |
|         router_logits = self.gate(hidden_states)
 | |
| 
 | |
|         routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
 | |
|         routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
 | |
|         if self.norm_topk_prob:  # only diff with mixtral sparse moe block!
 | |
|             routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
 | |
|         # we cast back to the input dtype
 | |
|         routing_weights = routing_weights.to(hidden_states.dtype)
 | |
|         if self.export_moe:
 | |
|             return self.custom_moe(hidden_states, routing_weights, selected_experts)
 | |
| 
 | |
|         final_hidden_states = torch.zeros(
 | |
|             (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
 | |
|         )
 | |
|         if False: # cpp impl
 | |
|             seqlen, topk = selected_experts.shape
 | |
|             if seqlen == 1:
 | |
|                 expert_idx = int(selected_experts[0, 0])
 | |
|                 scale = float(routing_weights[0, 0])
 | |
|                 output = self.experts[expert_idx](hidden_states) * scale
 | |
|                 for i in range(1, topk):
 | |
|                     expert_idx = int(selected_experts[0, i])
 | |
|                     scale = float(routing_weights[0, i])
 | |
|                     output += self.experts[expert_idx](hidden_states) * scale
 | |
|                 return output
 | |
| 
 | |
|             hss = torch.split(hidden_states, 1)
 | |
|             expertWorks = [[] for i in range(self.num_experts)]
 | |
|             # print(routing_weights, selected_experts)
 | |
|             for i in range(seqlen):
 | |
|                 for j in range(topk):
 | |
|                     expert_idx = int(selected_experts[i, j])
 | |
|                     scale = float(routing_weights[i, j])
 | |
|                     expertWorks[expert_idx].append((i, scale))
 | |
| 
 | |
|             for i in range(self.num_experts):
 | |
|                 if len(expertWorks[i]) == 0:
 | |
|                     continue
 | |
|                 input_hs = []
 | |
|                 for token_id, scale in expertWorks[i]:
 | |
|                     input_hs.append(hss[token_id])
 | |
|                 output_hs = self.experts[i](torch.concat(input_hs))
 | |
|                 output_hss = torch.split(output_hs, 1)
 | |
|                 for j in range(len(expertWorks[i])):
 | |
|                     token_id, scale = expertWorks[i][j]
 | |
|                     scale_hs = output_hss[j] * scale
 | |
|                     final_hidden_states[token_id] += scale_hs.squeeze(0)
 | |
|             return final_hidden_states
 | |
| 
 | |
|         # One hot encode the selected experts to create an expert mask
 | |
|         # this will be used to easily index which expert is going to be sollicitated
 | |
|         expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
 | |
| 
 | |
|         # Loop over all available experts in the model and perform the computation on each expert
 | |
|         for expert_idx in range(self.num_experts):
 | |
|             expert_layer = self.experts[expert_idx]
 | |
|             idx, top_x = torch.where(expert_mask[expert_idx])
 | |
| 
 | |
|             # Index the correct hidden states and compute the expert hidden state for
 | |
|             # the current expert. We need to make sure to multiply the output hidden
 | |
|             # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
 | |
|             current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
 | |
|             current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
 | |
|             # However `index_add_` only support torch tensors for indexing so we'll use
 | |
|             # the `top_x` tensor here.
 | |
|             final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
 | |
|         final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
 | |
|         return final_hidden_states
 | |
| 
 | |
| class Decoder(torch.nn.Module):
 | |
|     def __init__(self, decoder, layer_id, config):
 | |
|         super().__init__()
 | |
|         self.cross_decoder = False
 | |
|         ModelMapper.do_map(self, decoder, config.model_map['decoder'])
 | |
|         if 'mlp' in config.model_map:
 | |
|             self.mlp = Mlp(self.mlp, config, layer_id)
 | |
|         # mllama has cross_attn
 | |
|         if hasattr(self, 'cross_attn') and self.cross_attn is not None:
 | |
|             self.cross_decoder = True
 | |
|             self.self_attn = Attention(self.cross_attn, layer_id, config)
 | |
|         else:
 | |
|             self.self_attn = Attention(self.self_attn, layer_id, config)
 | |
|         self.hidden_size = config.hidden_size
 | |
|         # chatglm
 | |
|         self.alpha = (2 * config.num_hidden_layers) ** 0.5 if config.model_type == 'chatglm' else 1.0
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         hidden_states: torch.Tensor,
 | |
|         rotary_pos_emb: Optional[torch.Tensor] = None,
 | |
|         attention_mask: Optional[torch.Tensor] = None,
 | |
|         past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | |
|         cross_attention_states: Optional[torch.Tensor] = None,
 | |
|         cross_attention_mask: Optional[torch.Tensor] = None,
 | |
|     ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
 | |
|         hidden_states = hidden_states.view(1, -1, self.hidden_size)
 | |
|         residual = hidden_states
 | |
|         hidden_states = self.input_layernorm(hidden_states)
 | |
|         norm_hidden_states = hidden_states
 | |
|         # Self Attention
 | |
|         hidden_states, present_key_value = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             rotary_pos_emb=rotary_pos_emb,
 | |
|             attention_mask=attention_mask,
 | |
|             past_key_value=past_key_value,
 | |
|             cross_attention_states=cross_attention_states,
 | |
|         )
 | |
|         # Fully Connected
 | |
|         if not hasattr(self, 'post_attention_layernorm'):
 | |
|             # phi
 | |
|             feed_forward_hidden_states = self.mlp(norm_hidden_states)
 | |
|             hidden_states = hidden_states + feed_forward_hidden_states + residual
 | |
|         elif self.alpha != 1.0:
 | |
|             # chatglm-6b
 | |
|             hidden_states = norm_hidden_states * self.alpha + hidden_states
 | |
|             mlp_input = self.post_attention_layernorm(hidden_states)
 | |
|             mlp_output = self.mlp(mlp_input)
 | |
|             hidden_states = mlp_input * self.alpha + mlp_output
 | |
|         elif hasattr(self, 'pre_feedforward_layernorm'):
 | |
|             # gemma2
 | |
|             hidden_states = self.post_attention_layernorm(hidden_states)
 | |
|             hidden_states = residual + hidden_states
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.pre_feedforward_layernorm(hidden_states)
 | |
|             hidden_states = self.mlp(hidden_states)
 | |
|             hidden_states = self.post_feedforward_layernorm(hidden_states)
 | |
|             hidden_states = residual + hidden_states
 | |
|         elif cross_attention_mask is not None and self.cross_decoder:
 | |
|             hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.post_attention_layernorm(hidden_states)
 | |
|             hidden_states = self.mlp(hidden_states)
 | |
|             hidden_states = cross_attention_mask * hidden_states
 | |
|             hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
 | |
|         else:
 | |
|             # general
 | |
|             hidden_states = residual + hidden_states
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.post_attention_layernorm(hidden_states)
 | |
|             hidden_states = self.mlp(hidden_states)
 | |
|             hidden_states = residual + hidden_states
 | |
| 
 | |
|         return hidden_states, present_key_value
 | |
| 
 | |
| class Lm(torch.nn.Module):
 | |
|     def __init__(self, lm_, final_layernorm_, config):
 | |
|         super().__init__()
 | |
|         self.final_layernorm = final_layernorm_
 | |
|         self.lm = lm_
 | |
|         self.hidden_size = config.hidden_size
 | |
| 
 | |
|     def forward(self, hidden_states, logits_index: int = -1):
 | |
|         hidden_states = hidden_states[:, logits_index:, :]
 | |
|         hidden_states = self.final_layernorm(hidden_states)
 | |
|         m_logits = self.lm(hidden_states)
 | |
|         return m_logits |