MNN/tools/train/source/optimizer/ParameterOptimizer.cpp

69 lines
1.7 KiB
C++

//
// ParameterOptimizer.cpp
// MNN
//
// Created by MNN on 2019/11/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ParameterOptimizer.hpp"
#include "SGD.hpp"
#include "ADAM.hpp"
namespace MNN {
namespace Train {
ParameterOptimizer* ParameterOptimizer::createSGD(float lr, float momentum) {
auto sgd = new SGD;
sgd->setLearningRate(lr);
sgd->setMomentum(momentum);
sgd->setWeightDecay(0.0005f);
return sgd;
}
ParameterOptimizer* ParameterOptimizer::createADAM(float lr, float momentum, float momentum2) {
auto opt = new ADAM;
opt->setMomentum(momentum);
opt->setLearningRate(lr);
opt->setMomentum2(momentum2);
return opt;
}
bool ParameterOptimizer::step(Express::VARP loss) {
mStep++;
auto res = this->onGetNextParameter(loss);
for (auto iter : res) {
iter.second.fix(Express::VARP::TRAINABLE);
}
for (auto iter : res) {
iter.first->input(iter.second);
}
return !res.empty();
}
int ParameterOptimizer::currentStep() {
return mStep;
}
void ParameterOptimizer::setCurrentStep(int step) {
mStep = step;
}
void ParameterOptimizer::append(const std::vector<Express::VARP>& parameters) {
for (auto p : parameters) {
if (p->expr().first->inputType() == Express::VARP::TRAINABLE) {
mParameters.insert(p);
this->onAppend(p);
}
}
}
void ParameterOptimizer::remove(const std::vector<Express::VARP>& parameters) {
for (auto p : parameters) {
mParameters.erase(p);
this->onRemove(p);
}
}
const std::set<Express::VARP>& ParameterOptimizer::parameters() const {
return mParameters;
}
} // namespace Train
} // namespace MNN