MNN/source/backend/cpu/CPUDepthwiseConvInt8.cpp

309 lines
14 KiB
C++

//
// CPUDepthwiseConvInt8.cpp
// MNN
//
// Created by MNN on 2019/5/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUDepthwiseConvInt8.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "compute/Int8FunctionsOpt.h"
#include "core/Concurrency.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include <math.h>
#ifdef MNN_USE_SSE
#define BASIC_TYPE int16_t
#else
#define BASIC_TYPE int8_t
#endif
namespace MNN {
void CPUDepthwiseConvInt8::fastDepthwiseInt8(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
int UNIT = mPack;
if (mUse3x3Kernel) {
UNIT = 4;
}
auto input = inputs[0];
auto output = outputs[0];
const int batch = input->batch();
const int src_b_step = input->stride(0);
const int dst_b_step = output->stride(0);
const auto inputPtr = input->host<int8_t>();
auto outputPtr = output->host<int8_t>();
const int dst_depth_quad = UP_DIV(output->channel(), UNIT);
const int src_width = input->width();
const int src_height = input->height();
const int dst_width = output->width();
const int dst_height = output->height();
const int dst_z_step = dst_width * dst_height * UNIT;
const int src_z_step = src_width * src_height * UNIT;
const auto weightPtr = mResource->mWeightInt8->host<BASIC_TYPE>();
// const auto biasPtr = mMutableResource.mBiasInt32->host<int32_t>();
const auto biasPtr = mBiasExtend.data();
const auto scalePtr = mMutableResource.mScaleFloat->host<float>();
auto totalCount = batch * dst_depth_quad;
MNN_CONCURRENCY_BEGIN(tId, mThreadNumber) {
const auto inputPadPtr = mInputPad->host<BASIC_TYPE>() + mInputPad->stride(0) * tId;
QuanPostTreatParameters quanParameters;
if (mResource->mRelu) {
quanParameters.maxValue = mMutableResource.mClampMax;
quanParameters.minValue = mMutableResource.mOutputZeroPoint;
} else {
quanParameters.maxValue = mMutableResource.mClampMax;
quanParameters.minValue = mMutableResource.mClampMin;
}
for (int index = tId; index < totalCount; index += mThreadNumber) {
int dz = index / batch;
const auto srcOrigin = inputPtr + index * src_z_step;
auto dstOrigin = outputPtr + index * dst_z_step;
#ifdef MNN_USE_SSE
auto inputPadPtrCopy = (int8_t*)inputPadPtr + mInputPad->stride(0);
::memset(inputPadPtrCopy, mMutableResource.mInputZeroPoint + 128, mInputPad->stride(0) * sizeof(int8_t));
#else
auto inputPadPtrCopy = inputPadPtr;
::memset(inputPadPtrCopy, mMutableResource.mInputZeroPoint, mInputPad->stride(0) * sizeof(int8_t));
#endif
// Pad inputs
for (int y = 0; y < src_height; ++y) {
auto src = srcOrigin + y * src_width * UNIT;
auto dst = inputPadPtrCopy + ((y + mPads.second) * mPaddedSize.first + mPads.first) * UNIT;
::memcpy(dst, src, src_width * UNIT * sizeof(int8_t));
}
#ifdef MNN_USE_SSE
// Int8_t -> Int16_t
MNNInt8ToInt16(inputPadPtr, inputPadPtrCopy, mInputPad->stride(0));
#endif
// Compute
const auto weight_dz = weightPtr + dz * mKernels.first * mKernels.second * UNIT;
const auto bias_dz = biasPtr + dz * 16;
const auto scale_dz = scalePtr + dz * UNIT;
quanParameters.bias = bias_dz;
quanParameters.scale = scale_dz;
for (int dy = 0; dy < dst_height; ++dy) {
const int srcStartY = dy * mStrides.second;
const auto src_dy = inputPadPtr + srcStartY * mPaddedSize.first * UNIT;
auto dst_y = dstOrigin + dy * dst_width * UNIT;
mThreadFunction(dst_y, (const int8_t*)src_dy, (const int8_t*)weight_dz, &quanParameters, dst_width, mStrides.first * UNIT, mKernels.first, mKernels.second, mDilates.first * UNIT, mDilates.second * UNIT * mPaddedSize.first, mOrder.data());
}
}
}
MNN_CONCURRENCY_END();
}
CPUDepthwiseConvInt8::CPUDepthwiseConvInt8(Backend* backend, const Convolution2DCommon* common, std::shared_ptr<ResourceInt8> res): CPUConvolution(common, backend), mResource(res), mMutableResource(res, backend) {
mValid = mMutableResource.mValid;
}
CPUDepthwiseConvInt8::~CPUDepthwiseConvInt8() {
// Do nothing
}
bool CPUDepthwiseConvInt8::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
auto exe = new CPUDepthwiseConvInt8(bn, op->main_as_Convolution2D()->common(), mResource);
*dst = exe;
return true;
}
ErrorCode CPUDepthwiseConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
std::vector<float> inputQuantInfo = TensorUtils::getQuantInfo(input);
std::vector<float> outputQuantInfo = TensorUtils::getQuantInfo(output);
mMutableResource.updateInputOutputScale(inputQuantInfo, outputQuantInfo);
auto pads = ConvolutionCommon::convolutionPadFull(input, output, mCommon);
int padX = std::get<0>(pads);
int padY = std::get<1>(pads);
mPads = std::make_pair(padX, padY);
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend())->functions();
int UNIT = mPack;
mThreadFunction = core->ConvDepthwiseLineInt8;
const int src_width = input->width();
const int src_height = input->height();
const int dst_width = output->width();
const int dst_height = output->height();
const int strideY = mCommon->strideY();
const int strideX = mCommon->strideX();
const int dilateY = mCommon->dilateY();
const int dilateX = mCommon->dilateX();
const int kernel_height = mCommon->kernelY();
const int kernel_width = mCommon->kernelX();
int size_ = mMutableResource.mBiasInt32->length(0);
if (core->ConvDepthwise3x3LineInt8_ARM82) {
if (kernel_width == 3 && kernel_height == 3 && strideX == 1 && strideY == 1 && dilateX == 1 && dilateY == 1 && gcore->MNNMultiAndDestTransformCommon23 != nullptr && dst_width >= 2 && dst_height >= 2) {
mUse3x3Kernel = true;
mThreadFunction = core->ConvDepthwise3x3LineInt8_ARM82;
UNIT = 4;
mOrder.resize(64);
mOrder = { 0, 4, 8, 16, 1, 5, 9, 17, 2, 6, 10, 18, 3, 7, 11, 19,
4, 8, 16, 20, 5, 9, 17, 21, 6, 10, 18, 22, 7, 11, 19, 23,
4, 8, 12, 20, 5, 9, 13, 21, 6, 10, 14, 22, 7, 11, 15, 23,
8, 12, 20, 24, 9, 13, 21, 25, 10, 14, 22, 26, 11, 15, 23, 27
};
int32_t* biasPtr = mMutableResource.mBiasInt32->host<int32_t>();
mBiasExtend.resize(size_ * 4);
int32_t* dstPtr = mBiasExtend.data();
for (int i = 0; i < size_ / 4; ++i) {
::memcpy(dstPtr, biasPtr, sizeof(int32_t) * 4);
::memcpy(dstPtr + 4, biasPtr, sizeof(int32_t) * 4);
::memcpy(dstPtr + 8, biasPtr, sizeof(int32_t) * 4);
::memcpy(dstPtr + 12, biasPtr, sizeof(int32_t) * 4);
biasPtr += 4;
dstPtr += 16;
}
}
}
if (!mUse3x3Kernel) {
mBiasExtend.resize(size_);
int32_t* biasPtr = mMutableResource.mBiasInt32->host<int32_t>();
int32_t* dstPtr = mBiasExtend.data();
::memcpy(dstPtr, biasPtr, sizeof(int32_t) * size_);
}
const int dst_depth_quad = UP_DIV(output->channel(), UNIT);
const int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
mThreadNumber = std::min(threadNumber, dst_depth_quad * input->batch());
int paddedWidth = std::get<0>(pads) + std::get<2>(pads) + input->width();
int paddedHeight = std::get<1>(pads) + std::get<3>(pads) + input->height();
mInputPad.reset(Tensor::createDevice<BASIC_TYPE>({mThreadNumber, paddedWidth * paddedHeight * UNIT}));
mPaddedSize = std::make_pair(paddedWidth, paddedHeight);
mStrides = std::make_pair(strideX, strideY);
mDilates = std::make_pair(dilateX, dilateY);
mKernels = std::make_pair(kernel_width, kernel_height);
bool succ = backend()->onAcquireBuffer(mInputPad.get(), Backend::DYNAMIC);
if (!succ) {
return OUT_OF_MEMORY;
}
mInputTemp.reset(Tensor::createDevice<BASIC_TYPE>({input->batch(), src_height, src_width, UP_DIV(output->channel(), UNIT) * UNIT}));
mOutputTemp.reset(Tensor::createDevice<BASIC_TYPE>({output->batch(), dst_height, dst_width, UP_DIV(output->channel(), UNIT) * UNIT}));
bool res = backend()->onAcquireBuffer(mInputTemp.get(), Backend::DYNAMIC)
&& backend()->onAcquireBuffer(mOutputTemp.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(mInputTemp.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mOutputTemp.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mInputPad.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUDepthwiseConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->functions();
auto coreInt8 = static_cast<CPUBackend*>(backend())->int8Functions();
auto input = inputs[0];
auto output = outputs[0];
auto plane_in = input->width() * input->height() * input->batch();
auto plane_out = output->width() * output->height() * output->batch();
auto depth = UP_DIV(input->channel(), core->pack);
if (mUse3x3Kernel) {
CPUDepthwiseConvInt8::fastDepthwiseInt8(inputs, outputs);
return NO_ERROR;
}
if (core->pack == 4) {
MNNPackC4Origin(mInputTemp.get()->host<float>(), input->host<float>(), plane_in, depth, plane_in);
CPUDepthwiseConvInt8::fastDepthwiseInt8({mInputTemp.get()}, {mOutputTemp.get()});
MNNUnpackC4Origin(output->host<float>(), mOutputTemp.get()->host<float>(), plane_out, depth, plane_out);
}
else if (core->pack == 8) {
MNNPackC2Origin(mInputTemp.get()->host<double>(), input->host<double>(), plane_in, depth, plane_in);
CPUDepthwiseConvInt8::fastDepthwiseInt8({mInputTemp.get()}, {mOutputTemp.get()});
MNNUnpackC2Origin(output->host<double>(), mOutputTemp.get()->host<double>(), plane_out, depth, plane_out);
} else if (core->pack == 16) {
CPUDepthwiseConvInt8::fastDepthwiseInt8(inputs, outputs);
}
return NO_ERROR;
}
class CPUDepthwiseConvInt8Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
auto convOp = op->main_as_Convolution2D();
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend)->functions();
auto common = convOp->common();
bool use3x3kernel = false;
int UNIT = 16;
if (core->ConvDepthwise3x3LineInt8_ARM82) {
if (common->kernelX() == 3 && common->kernelY() == 3 && common->strideX() == 1 && common->strideY() == 1 && common->dilateX() == 1
&& common->dilateY() == 1 && gcore->MNNMultiAndDestTransformCommon23 != nullptr && outputs[0]->width() >= 2 && outputs[0]->height() >= 2) {
use3x3kernel = true;
UNIT = 4;
}
}
auto res = CPUConvolution::makeResourceInt8(backend, convOp, UNIT);
const int kernelSize = common->kernelX() * common->kernelY();
const int outputCount = common->outputCount();
const int ocDivUnit = UP_DIV(outputCount, UNIT);
const int weightSizeAlign = ocDivUnit * UNIT * kernelSize;
std::shared_ptr<Tensor> weight(Tensor::createDevice<BASIC_TYPE>({weightSizeAlign}));
auto allocRes = backend->onAcquireBuffer(weight.get(), Backend::STATIC);
if (!allocRes) {
return nullptr;
}
// Reorder the weight
auto originWeight = res->mWeightInt8->host<int8_t>();
auto weightPtr = weight->host<BASIC_TYPE>();
memset(weightPtr, 0, weightSizeAlign * sizeof(BASIC_TYPE));
if (use3x3kernel) {
int kernelOrder[8] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int dz = 0; dz < outputCount; ++dz) {
const int dzDivUnit = dz / gcore->pack;
const int my = dz % gcore->pack;
auto dstDz = weightPtr + dzDivUnit * kernelSize * gcore->pack;
for (int i = 0; i < 4; ++i) { // kernelSize = 9
int k = kernelOrder[i];
dstDz[i + my * 4] = (BASIC_TYPE)(originWeight[dz * kernelSize + k]);
}
for (int i = 0; i < 4; ++i) {
int k = kernelOrder[i + 4];
dstDz[16 + i + my * 4] = (BASIC_TYPE)(originWeight[dz * kernelSize + k]);
}
dstDz[8 * gcore->pack + my] = (BASIC_TYPE)(originWeight[dz * kernelSize + 8]);
}
res->mWeightInt8.swap(weight);
backend->onReleaseBuffer(weight.get(), Backend::STATIC);
return new CPUDepthwiseConvInt8(backend, convOp->common(), res);
}
for (int dz = 0; dz < outputCount; ++dz) {
const int dzDivUnit = dz / UNIT;
const int my = dz % UNIT;
auto dstDz = weightPtr + dzDivUnit * kernelSize * UNIT;
for (int i = 0; i < kernelSize; ++i) {
dstDz[i * UNIT + my] = (BASIC_TYPE)(originWeight[dz * kernelSize + i]);
}
}
res->mWeightInt8.swap(weight);
backend->onReleaseBuffer(weight.get(), Backend::STATIC);
return new CPUDepthwiseConvInt8(backend, convOp->common(), res);
}
};
REGISTER_CPU_OP_CREATOR(CPUDepthwiseConvInt8Creator, OpType_DepthwiseConvInt8);
} // namespace MNN