MNN/source/backend/cpu/CPULayerNorm.cpp

156 lines
5.7 KiB
C++

//
// CPULayerNorm.cpp
// MNN
//
// Created by MNN on 2020/07/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <cmath>
#include "backend/cpu/CPULayerNorm.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Execution.hpp"
#include "core/Concurrency.h"
#include "core/OpCommonUtils.hpp"
#include "MNN_generated.h"
namespace MNN {
bool CPULayerNorm::allocGammaBeta(int size) {
mIniGammaBeta = true;
mGamma.reset(Tensor::createDevice<float>({size}));
auto status = backend()->onAcquireBuffer(mGamma.get(), Backend::STATIC);
if (!status) {
MNN_ERROR("Out of memory when gamma is acquired in CPULayerNorm.\n");
return false;
}
mBeta.reset(Tensor::createDevice<float>({size}));
status = backend()->onAcquireBuffer(mBeta.get(), Backend::STATIC);
if (!status) {
MNN_ERROR("Out of memory when beta is acquired in CPULayerNorm.\n");
return false;
}
return true;
}
CPULayerNorm::CPULayerNorm(const MNN::Op* op, Backend* backend) : Execution(backend) {
const auto* layer_norm_param = op->main_as_LayerNorm();
mAxis = layer_norm_param->axis()->size();
mGroup = layer_norm_param->group();
mEpsilon = layer_norm_param->epsilon();
if (USE_EXTERNAL_DATA(layer_norm_param)) {
int32_t size = static_cast<int32_t>(layer_norm_param->external()->Get(1));
allocGammaBeta(size);
OpCommonUtils::loadExternalDatas(backend, {mGamma->host<char>(), mBeta->host<char>()}, layer_norm_param->external()->data());
return;
}
if (layer_norm_param->gamma() && layer_norm_param->beta()) {
int size = layer_norm_param->gamma()->size();
if (layer_norm_param->beta()->size() != size) {
MNN_ERROR("Size of gamma and beta are not match in CPULayerNorm.\n");
}
allocGammaBeta(size);
const float* gamma_data = layer_norm_param->gamma()->data();
memcpy(mGamma->host<float>(), gamma_data, size * sizeof(float));
const float* beta_data = layer_norm_param->beta()->data();
memcpy(mBeta->host<float>(), beta_data, size * sizeof(float));
}
}
ErrorCode CPULayerNorm::onExecute(const std::vector<Tensor*> &inputs,
const std::vector<Tensor*> &outputs) {
const float* gamma = mIniGammaBeta ? mGamma->host<float>() : nullptr;
const float* beta = mIniGammaBeta ? mBeta->host<float>() : nullptr;
if (mInpZero.data()) {
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
const int8_t* input = inputs[0]->host<int8_t>();
int8_t* output = outputs[0]->host<int8_t>();
MNN_CONCURRENCY_BEGIN(tId, mOutterSize) {
QuanPrePostParameters params;
params.maxValue = mMaxMinValue[0];
params.minValue = mMaxMinValue[1];
params.inputScale = mInpScale.data();
params.outputScale = mOutScale.data();
params.inputZeroPoint = mInpZero.data();
params.outputZeroPoint = mOutZero.data();
const int8_t* inner_input = input + tId * mInnerSize;
int8_t* inner_output = output + tId * mInnerSize;
core->MNNNormInt8(inner_output, inner_input, gamma, beta, mEpsilon, mInnerSize, &params);
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
const float* input = inputs.at(0)->host<float>();
float* output = outputs.at(0)->host<float>();
MNN_CONCURRENCY_BEGIN(tId, mOutterSize) {
const float* inner_input = input + tId * mInnerSize;
float* inner_output = output + tId * mInnerSize;
MNNNorm(inner_output, inner_input, gamma, beta, mEpsilon, mInnerSize);
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
ErrorCode CPULayerNorm::onResize(const std::vector<Tensor*> &inputs,
const std::vector<Tensor*> &outputs) {
mOutterSize = 1;
mInnerSize = 1;
int rank = inputs.at(0)->dimensions();
if (mGroup > 1) {
mOutterSize = inputs.at(0)->length(0) * mGroup;
for (int i = 1; i < rank; i++) {
mInnerSize *= inputs.at(0)->length(i);
}
mInnerSize /= mGroup;
return NO_ERROR;
}
for (int i = 0; i < rank - mAxis; ++i) {
mOutterSize *= inputs.at(0)->length(i);
}
for (int i = rank - mAxis; i < rank; ++i) {
mInnerSize *= inputs.at(0)->length(i);
}
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
mInpZero.resize(1);
mOutZero.resize(1);
mInpScale.resize(1);
mOutScale.resize(1);
mMaxMinValue.resize(2);
auto inpQuantAttr = TensorUtils::getDescribe(inputs[0])->quantAttr;
auto outQuantAttr = TensorUtils::getDescribe(outputs[0])->quantAttr;
mInpZero[0] = inpQuantAttr->zero;
mOutZero[0] = outQuantAttr->zero;
mInpScale[0] = inpQuantAttr->scale;
mOutScale[0] = outQuantAttr->scale == 0.f? 0.f : 1.0f / outQuantAttr->scale;
mMaxMinValue[0] = outQuantAttr->max;
mMaxMinValue[1] = outQuantAttr->min;
}
return NO_ERROR;
}
CPULayerNorm::~CPULayerNorm() {
if (mGamma.get()) {
backend()->onReleaseBuffer(mGamma.get(), Backend::STATIC);
}
if (mBeta.get()) {
backend()->onReleaseBuffer(mBeta.get(), Backend::STATIC);
}
}
class CPULayerNormCreator : public CPUBackend::Creator {
public:
Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op, Backend* backend) const override {
return new CPULayerNorm(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPULayerNormCreator, OpType_LayerNorm);
} // namespace MNN