mirror of https://github.com/alibaba/MNN.git
265 lines
12 KiB
C++
265 lines
12 KiB
C++
//
|
|
// CPURNNSequenceGRU.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/03/19.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPURNNSequenceGRU.hpp"
|
|
#include <math.h>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/ConvOpt.h"
|
|
#include "math/Matrix.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
static inline float sigmoid(float x) {
|
|
return 1. / (1. + expf(-x));
|
|
}
|
|
|
|
static inline void ArrayProduct(float* C, float* A, float* B, const int length) {
|
|
int numUnit4 = length >> 2;
|
|
if (numUnit4 > 0) {
|
|
MNNMatrixProd(C, A, B, numUnit4, 0, 0, 0, 1);
|
|
}
|
|
for (int i = numUnit4 << 2; i < length; i++) {
|
|
C[i] = A[i] * B[i];
|
|
}
|
|
return;
|
|
}
|
|
|
|
static inline void ArrayAdd(float* C, float* A, float* B, const int length) {
|
|
int numUnit4 = length >> 2;
|
|
if (numUnit4 > 0) {
|
|
MNNMatrixAdd(C, A, B, numUnit4, 0, 0, 0, 1);
|
|
}
|
|
for (int i = numUnit4 << 2; i < length; i++) {
|
|
C[i] = A[i] + B[i];
|
|
}
|
|
return;
|
|
}
|
|
|
|
// implement GRU cell function
|
|
// Ref: tensorflow/python/ops/rnn_cell_impl.py
|
|
static void runRNNStep(const float* input, const int inputLength, const bool linearBeforeReset,
|
|
std::shared_ptr<Tensor>& hiddenState, const int numUnits, Tensor* gateWeight, Tensor* gateBias,
|
|
Tensor* candidateWeight, Tensor* candidateBias, Tensor* recurrentBias,
|
|
std::shared_ptr<Tensor>& inputAndState, std::shared_ptr<Tensor>& gate,
|
|
std::shared_ptr<Tensor>& resetHt) {
|
|
// gate is (z_t, r_t)
|
|
auto inputAndStatePtr = inputAndState->host<float>();
|
|
auto hiddenStatePtr = hiddenState->host<float>();
|
|
::memcpy(inputAndStatePtr, input, inputLength * sizeof(float));
|
|
::memcpy(inputAndStatePtr + inputLength, hiddenStatePtr, numUnits * sizeof(float));
|
|
inputAndState->setLength(1, inputLength + numUnits);
|
|
// to be fused
|
|
// // [x_t, h_t-1] * [W_zr, R_zr]: (1, inputLength + numUnits) X (inputLength + numUnits, 2 * numUnits)
|
|
Math::Matrix::multi(gate.get(), inputAndState.get(), gateWeight);
|
|
Math::Matrix::add(gate.get(), gate.get(), gateBias);
|
|
|
|
recurrentBias->setLength(1, 2 * numUnits);
|
|
Math::Matrix::add(gate.get(), gate.get(), recurrentBias);
|
|
// (1, 2*numUnits)
|
|
const int gateSize = gate->elementSize();
|
|
auto gatePtr = gate->host<float>();
|
|
for (int i = 0; i < gateSize; ++i) {
|
|
gatePtr[i] = sigmoid(gatePtr[i]);
|
|
}
|
|
// reset gate, // r_t is the second segment
|
|
auto rtPtr = gatePtr + numUnits;
|
|
|
|
if (linearBeforeReset) {
|
|
// calculate Rt (.) (Ht_1 * Rh + Rbh)
|
|
auto recurrentHiddenBiasPtr = recurrentBias->host<float>() + 2 * numUnits;
|
|
auto rhWeightPtr = candidateWeight->host<float>() + inputLength * numUnits;
|
|
Tensor* rhWeight = Tensor::create({numUnits, numUnits}, candidateWeight->getType(), (void*)(rhWeightPtr), TensorUtils::getDimType(candidateWeight));
|
|
Math::Matrix::multi(resetHt.get(), hiddenState.get(), rhWeight);
|
|
ArrayAdd(resetHt->host<float>(), resetHt->host<float>(), recurrentHiddenBiasPtr, numUnits),
|
|
ArrayProduct(resetHt->host<float>(), rtPtr, resetHt->host<float>(), numUnits);
|
|
|
|
// calculate Xt * Wh
|
|
Tensor* XtWhTensor = Tensor::create({1, numUnits}, inputAndState->getType(), (void*)(inputAndStatePtr + inputLength + numUnits), TensorUtils::getDimType(inputAndState.get()));
|
|
Tensor* inputTensor = Tensor::create({1, inputLength}, inputAndState->getType(), (void*)(input), TensorUtils::getDimType(inputAndState.get()));
|
|
candidateWeight->setLength(0, inputLength);
|
|
Math::Matrix::multi(XtWhTensor, inputTensor, candidateWeight);
|
|
// sum 3 parts
|
|
ArrayAdd(resetHt->host<float>(), resetHt->host<float>(), XtWhTensor->host<float>(), numUnits);
|
|
ArrayAdd(rtPtr, resetHt->host<float>(), candidateBias->host<float>(), numUnits),
|
|
candidateWeight->setLength(0, inputLength + numUnits);
|
|
|
|
// release wrapper
|
|
delete rhWeight;
|
|
delete XtWhTensor;
|
|
delete inputTensor;
|
|
} else {
|
|
// r_t: (1, numUnits)
|
|
auto resetGatePtr = inputAndStatePtr + inputLength;
|
|
// h_t1(1, numUnits) = r_t(1, numUnits) * h_t-1_(1, numUnits)
|
|
ArrayProduct(resetGatePtr, rtPtr, hiddenStatePtr, numUnits);
|
|
// deal with recurrent bias and linear_before_reset parameter
|
|
auto recurrentBiasAddedPtr = inputAndStatePtr + inputLength + numUnits;
|
|
auto recurrentHiddenBiasPtr = recurrentBias->host<float>() + 2 * numUnits;
|
|
|
|
ArrayAdd(recurrentBiasAddedPtr, recurrentHiddenBiasPtr, candidateBias->host<float>(), numUnits);
|
|
// [x_t, h_t1](1, inputLength + numUnits) * candidateWeight_(inputLength + numUnits, numUnits)
|
|
Math::Matrix::multi(resetHt.get(), inputAndState.get(), candidateWeight);
|
|
// reuse r_t memory as h_t'
|
|
ArrayAdd(rtPtr, resetHt->host<float>(), recurrentBiasAddedPtr, numUnits);
|
|
}
|
|
|
|
for (int i = 0; i < numUnits; ++i) {
|
|
hiddenStatePtr[i] =
|
|
(1 - gatePtr[i]) * tanhf(rtPtr[i]) + gatePtr[i] * hiddenStatePtr[i];
|
|
}
|
|
|
|
inputAndState->setLength(1, inputLength + 2 * numUnits);
|
|
}
|
|
|
|
CPURNNSequenceGRU::CPURNNSequenceGRU(const Op* op, Backend* backend) : MNN::Execution(backend) {
|
|
auto rnnParam = op->main_as_RNNParam();
|
|
mKeepAllOutputs = rnnParam->keepAllOutputs();
|
|
mIsBidirectionalRNN = rnnParam->isBidirectionalRNN();
|
|
mNumUnits = rnnParam->numUnits();
|
|
mlinearBeforeReset = rnnParam->linearBeforeReset();
|
|
|
|
}
|
|
|
|
CPURNNSequenceGRU::~CPURNNSequenceGRU() {
|
|
// Do nothing
|
|
}
|
|
|
|
ErrorCode CPURNNSequenceGRU::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
MNN_ASSERT(1 + 5 * (mIsBidirectionalRNN + 1) <= inputs.size());
|
|
auto input = inputs[0];
|
|
const int inputLastDimSize = input->length(2);
|
|
mHiddenState.reset(Tensor::createDevice<float>(std::vector<int>{1, mNumUnits}));
|
|
mInputAndState.reset(Tensor::createDevice<float>(std::vector<int>{1, inputLastDimSize + mNumUnits + mNumUnits}));
|
|
mGate.reset(Tensor::createDevice<float>(std::vector<int>{1, 2 * mNumUnits}));
|
|
mResetHt.reset(Tensor::createDevice<float>(std::vector<int>{1, mNumUnits}));
|
|
|
|
backend()->onAcquireBuffer(mHiddenState.get(), Backend::DYNAMIC);
|
|
backend()->onAcquireBuffer(mInputAndState.get(), Backend::DYNAMIC);
|
|
backend()->onAcquireBuffer(mGate.get(), Backend::DYNAMIC);
|
|
backend()->onAcquireBuffer(mResetHt.get(), Backend::DYNAMIC);
|
|
|
|
backend()->onReleaseBuffer(mHiddenState.get(), Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(mInputAndState.get(), Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(mGate.get(), Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(mResetHt.get(), Backend::DYNAMIC);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPURNNSequenceGRU::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
auto inputSize = inputs.size();
|
|
auto outputSize = outputs.size();
|
|
const int forwardParamNumber = 5;
|
|
MNN_ASSERT(inputSize >= 1 + forwardParamNumber * (mIsBidirectionalRNN + 1));
|
|
auto fwGateWeight = inputs[1];
|
|
auto fwGateBias = inputs[2];
|
|
auto fwCandidateWeight = inputs[3];
|
|
auto fwCandidateBias = inputs[4];
|
|
auto fwRecurrentBias = inputs[5];
|
|
|
|
// fwGateWeight->printShape();// mFwGateWeight
|
|
// fwGateBias->printShape();// mFwGateBias
|
|
// fwCandidateWeight->printShape();// mFwCandidateWeight
|
|
// fwCandidateBias->printShape();// mFwCandidateBias
|
|
// fwRecurrentBias->printShape();// mFwRecurrentBias
|
|
|
|
// firstly set the hidden state to zero
|
|
float* const hiddenStatePtr = mHiddenState->host<float>();
|
|
const int hiddenStateDataSize = mHiddenState->size();
|
|
|
|
auto input = inputs[0]; // shape :(seq_length, batch_size, input_size)
|
|
auto output = outputs[0]; // shape :(seq_length, num_directions, batch_size, hidden_size)
|
|
float* const inputPtr = input->host<float>();
|
|
float* const outputPtr = output->host<float>();
|
|
|
|
float* outputYhPtr = mKeepAllOutputs && outputSize > 1 ? outputs[1]->host<float>() : outputs[0]->host<float>();
|
|
const int batchSize = input->length(1);
|
|
const int SequenceStride = input->stride(0);
|
|
const int inputSequenceLength = input->length(0);
|
|
const int inputCodeLength = input->length(2);
|
|
// MNN_PRINT("inputSequenceLength:%d, batchSize:%d, inputCodeLength:%d, mNumUnits:%d, hiddenStateDataSize:%d\n", inputSequenceLength, batchSize, inputCodeLength, mNumUnits, hiddenStateDataSize);
|
|
for (int b = 0; b < batchSize; ++b) { // swap order
|
|
if (inputSize > 1 + forwardParamNumber * (mIsBidirectionalRNN + 1)) {
|
|
auto source = inputs[inputSize - 1]->host<uint8_t>() + b * hiddenStateDataSize;
|
|
::memcpy(hiddenStatePtr, source, hiddenStateDataSize);
|
|
} else {
|
|
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
|
|
}
|
|
|
|
for (int i = 0; i < inputSequenceLength; ++i) {
|
|
const int inputOffset = i * SequenceStride + b * inputCodeLength;
|
|
runRNNStep(inputPtr + inputOffset, inputCodeLength, mlinearBeforeReset, mHiddenState, mNumUnits, fwGateWeight, fwGateBias,
|
|
fwCandidateWeight, fwCandidateBias, fwRecurrentBias, mInputAndState, mGate, mResetHt);
|
|
|
|
if (mKeepAllOutputs) {
|
|
::memcpy(outputPtr + i * output->stride(0) + b * mNumUnits, hiddenStatePtr, hiddenStateDataSize);
|
|
}
|
|
}
|
|
if ((mKeepAllOutputs && outputSize > 1) || !mKeepAllOutputs) {
|
|
::memcpy(outputYhPtr, hiddenStatePtr, hiddenStateDataSize);
|
|
outputYhPtr += mNumUnits;
|
|
}
|
|
|
|
}
|
|
|
|
// backward rnn
|
|
if (mIsBidirectionalRNN) {
|
|
float* outputYhPtr = mKeepAllOutputs && outputSize > 1 ? outputs[1]->host<float>() : outputs[0]->host<float>();
|
|
outputYhPtr += batchSize * mNumUnits;
|
|
// todo: modify the inputOffset
|
|
MNN_ASSERT(11 <= inputs.size());
|
|
auto bwGateWeight = inputs[6];
|
|
auto bwGateBias = inputs[7];
|
|
auto bwCandidateWeight = inputs[8];
|
|
auto bwCandidateBias = inputs[9];
|
|
auto bwRecurrentBias = inputs[10];
|
|
|
|
auto outputBw = outputs[0];
|
|
float* const outputBwPtr = outputBw->host<float>();
|
|
for (int b = 0; b < batchSize; ++b) {
|
|
|
|
if (inputSize > 1 + forwardParamNumber * 2) {
|
|
auto source = inputs[inputSize - 1]->host<uint8_t>() + (batchSize + b) * hiddenStateDataSize;
|
|
::memcpy(hiddenStatePtr, source, hiddenStateDataSize);
|
|
} else {
|
|
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
|
|
}
|
|
|
|
for (int i = inputSequenceLength - 1; i >= 0; i--) {
|
|
const int inputOffset = i * SequenceStride + b * inputCodeLength;
|
|
runRNNStep(inputPtr + inputOffset, inputCodeLength, mlinearBeforeReset, mHiddenState, mNumUnits, bwGateWeight, bwGateBias,
|
|
bwCandidateWeight, bwCandidateBias, bwRecurrentBias, mInputAndState, mGate, mResetHt);
|
|
if (mKeepAllOutputs) {
|
|
::memcpy(outputBwPtr + i * outputBw->stride(0) + (batchSize + b) * mNumUnits,
|
|
hiddenStatePtr, hiddenStateDataSize);
|
|
}
|
|
}
|
|
if ((mKeepAllOutputs && outputSize > 1) || !mKeepAllOutputs) {
|
|
::memcpy(outputYhPtr, hiddenStatePtr, hiddenStateDataSize);
|
|
outputYhPtr += mNumUnits;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPURNNSequenceGRUCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
return new CPURNNSequenceGRU(op, backend);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPURNNSequenceGRUCreator, OpType_RNNSequenceGRU);
|
|
|
|
} // namespace MNN
|