MNN/source/backend/cpu/CPURuntime.cpp

1572 lines
60 KiB
C++

//
// CPURuntime.cpp
// MNN
//
// Created by MNN on 2018/08/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
/**
Ref from:
https://github.com/Tencent/ncnn/blob/master/src/cpu.cpp
https://github.com/pytorch/cpuinfo
*/
#ifdef __ANDROID__
#include <stdint.h>
#include <sys/syscall.h>
#include <unistd.h>
#endif
#include "core/Macro.h"
#ifdef __ANDROID__
#include <fcntl.h>
#include <sys/auxv.h>
#include <sys/system_properties.h>
#endif // __ANDROID__
#if __APPLE__
#include "TargetConditionals.h"
#if __aarch64__
#include <sys/sysctl.h>
#endif
#if TARGET_OS_IPHONE
#include <mach/machine.h>
#include <sys/types.h>
#define __IOS__ 1
#endif // TARGET_OS_IPHONE
#endif // __APPLE__
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#include <MNN/MNNDefine.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include "backend/cpu/CPURuntime.hpp"
#if defined (__linux__) && defined (__aarch64__)
#include <sys/auxv.h>
#define CPUINFO_ARM_LINUX_FEATURE_FPHP UINT32_C(0x00000200)
#define CPUINFO_ARM_LINUX_FEATURE_ASIMDHP UINT32_C(0x00000400)
#define CPUINFO_ARM_LINUX_FEATURE_ASIMDDP UINT32_C(0x00100000)
#define CPUINFO_ARM_LINUX_FEATURE_I8MM UINT32_C(0x00002000)
#define CPUINFO_ARM_LINUX_FEATURE_SVE UINT32_C(0x00400000)
#define CPUINFO_ARM_LINUX_FEATURE_SVE2 UINT32_C(0x00000002)
#endif /* __linux__ && __aarch64__ */
#ifdef __ANDROID__
/* As per include/sys/system_properties.h in Android NDK */
#define CPUINFO_HARDWARE_VALUE_MAX 64
#define CPUINFO_BUILD_PROP_VALUE_MAX 92
struct cpuinfo_android_properties {
char proc_cpuinfo_hardware[CPUINFO_HARDWARE_VALUE_MAX];
char ro_product_board[CPUINFO_BUILD_PROP_VALUE_MAX];
char ro_board_platform[CPUINFO_BUILD_PROP_VALUE_MAX];
char ro_mediatek_platform[CPUINFO_BUILD_PROP_VALUE_MAX];
char ro_arch[CPUINFO_BUILD_PROP_VALUE_MAX];
char ro_chipname[CPUINFO_BUILD_PROP_VALUE_MAX];
char ro_hardware_chipname[CPUINFO_BUILD_PROP_VALUE_MAX];
};
enum cpuinfo_android_chipset_property {
cpuinfo_android_chipset_property_proc_cpuinfo_hardware = 0,
cpuinfo_android_chipset_property_ro_product_board,
cpuinfo_android_chipset_property_ro_board_platform,
cpuinfo_android_chipset_property_ro_mediatek_platform,
cpuinfo_android_chipset_property_ro_arch,
cpuinfo_android_chipset_property_ro_chipname,
cpuinfo_android_chipset_property_ro_hardware_chipname,
cpuinfo_android_chipset_property_max,
};
enum cpuinfo_arm_chipset_vendor {
cpuinfo_arm_chipset_vendor_unknown = 0,
cpuinfo_arm_chipset_vendor_qualcomm,
cpuinfo_arm_chipset_vendor_mediatek,
cpuinfo_arm_chipset_vendor_samsung,
cpuinfo_arm_chipset_vendor_hisilicon,
cpuinfo_arm_chipset_vendor_actions,
cpuinfo_arm_chipset_vendor_allwinner,
cpuinfo_arm_chipset_vendor_amlogic,
cpuinfo_arm_chipset_vendor_broadcom,
cpuinfo_arm_chipset_vendor_lg,
cpuinfo_arm_chipset_vendor_leadcore,
cpuinfo_arm_chipset_vendor_marvell,
cpuinfo_arm_chipset_vendor_mstar,
cpuinfo_arm_chipset_vendor_novathor,
cpuinfo_arm_chipset_vendor_nvidia,
cpuinfo_arm_chipset_vendor_pinecone,
cpuinfo_arm_chipset_vendor_renesas,
cpuinfo_arm_chipset_vendor_rockchip,
cpuinfo_arm_chipset_vendor_spreadtrum,
cpuinfo_arm_chipset_vendor_telechips,
cpuinfo_arm_chipset_vendor_texas_instruments,
cpuinfo_arm_chipset_vendor_wondermedia,
cpuinfo_arm_chipset_vendor_max,
};
enum cpuinfo_arm_chipset_series {
cpuinfo_arm_chipset_series_unknown = 0,
cpuinfo_arm_chipset_series_qualcomm_qsd,
cpuinfo_arm_chipset_series_qualcomm_msm,
cpuinfo_arm_chipset_series_qualcomm_apq,
cpuinfo_arm_chipset_series_qualcomm_snapdragon,
cpuinfo_arm_chipset_series_mediatek_mt,
cpuinfo_arm_chipset_series_samsung_exynos,
cpuinfo_arm_chipset_series_hisilicon_k3v,
cpuinfo_arm_chipset_series_hisilicon_hi,
cpuinfo_arm_chipset_series_hisilicon_kirin,
cpuinfo_arm_chipset_series_actions_atm,
cpuinfo_arm_chipset_series_allwinner_a,
cpuinfo_arm_chipset_series_amlogic_aml,
cpuinfo_arm_chipset_series_amlogic_s,
cpuinfo_arm_chipset_series_broadcom_bcm,
cpuinfo_arm_chipset_series_lg_nuclun,
cpuinfo_arm_chipset_series_leadcore_lc,
cpuinfo_arm_chipset_series_marvell_pxa,
cpuinfo_arm_chipset_series_mstar_6a,
cpuinfo_arm_chipset_series_novathor_u,
cpuinfo_arm_chipset_series_nvidia_tegra_t,
cpuinfo_arm_chipset_series_nvidia_tegra_ap,
cpuinfo_arm_chipset_series_nvidia_tegra_sl,
cpuinfo_arm_chipset_series_pinecone_surge_s,
cpuinfo_arm_chipset_series_renesas_mp,
cpuinfo_arm_chipset_series_rockchip_rk,
cpuinfo_arm_chipset_series_spreadtrum_sc,
cpuinfo_arm_chipset_series_telechips_tcc,
cpuinfo_arm_chipset_series_texas_instruments_omap,
cpuinfo_arm_chipset_series_wondermedia_wm,
cpuinfo_arm_chipset_series_max,
};
struct cpuinfo_arm_chipset {
enum cpuinfo_arm_chipset_vendor vendor;
enum cpuinfo_arm_chipset_series series;
uint32_t model;
char suffix[8];
};
#define BUFFER_SIZE 1024
static uint32_t getNumberOfCPU() {
FILE* fp = fopen("/proc/cpuinfo", "rb");
if (!fp) {
return 1;
}
uint32_t number = 0;
char buffer[BUFFER_SIZE];
while (!feof(fp)) {
char* str = fgets(buffer, BUFFER_SIZE, fp);
if (!str) {
break;
}
if (memcmp(buffer, "processor", 9) == 0) {
number++;
}
}
fclose(fp);
if (number < 1) {
number = 1;
}
return number;
}
static int getCPUMaxFreqKHz(int cpuID) {
char path[256];
sprintf(path, "/sys/devices/system/cpu/cpufreq/stats/cpu%d/time_in_state", cpuID);
FILE* fp = fopen(path, "rb");
if (!fp) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpuID);
fp = fopen(path, "rb");
if (!fp) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq", cpuID);
fp = fopen(path, "rb");
if (!fp) {
return -1;
}
int maxfrequency = -1;
fscanf(fp, "%d", &maxfrequency);
fclose(fp);
return maxfrequency;
}
}
int maxfrequency = 0;
while (!feof(fp)) {
int frequency = 0;
int history = fscanf(fp, "%d %*d", &frequency);
if (history != 1) {
break;
}
if (frequency > maxfrequency) {
maxfrequency = frequency;
}
}
fclose(fp);
return maxfrequency;
}
static int sortCPUIDByMaxFrequency(std::vector<int>& cpuIDs, int* littleClusterOffset) {
const int cpuNumbers = cpuIDs.size();
*littleClusterOffset = 0;
if (cpuNumbers == 0) {
return 0;
}
std::vector<int> cpusFrequency;
cpusFrequency.resize(cpuNumbers);
for (int i = 0; i < cpuNumbers; ++i) {
int frequency = getCPUMaxFreqKHz(i);
cpuIDs[i] = i;
cpusFrequency[i] = frequency;
// MNN_PRINT("cpu fre: %d, %d\n", i, frequency);
}
for (int i = 0; i < cpuNumbers; ++i) {
for (int j = i + 1; j < cpuNumbers; ++j) {
if (cpusFrequency[i] < cpusFrequency[j]) {
// id
int temp = cpuIDs[i];
cpuIDs[i] = cpuIDs[j];
cpuIDs[j] = temp;
// frequency
temp = cpusFrequency[i];
cpusFrequency[i] = cpusFrequency[j];
cpusFrequency[j] = temp;
}
}
}
int midMaxFrequency = (cpusFrequency.front() + cpusFrequency.back()) / 2;
if (midMaxFrequency == cpusFrequency.back()) {
return 0;
}
for (int i = 0; i < cpuNumbers; ++i) {
if (cpusFrequency[i] < midMaxFrequency) {
*littleClusterOffset = i;
break;
}
}
return 0;
}
static int setSchedAffinity(const std::vector<int>& cpuIDs) {
#define CPU_SETSIZE 1024
#define __NCPUBITS (8 * sizeof(unsigned long))
typedef struct {
unsigned long __bits[CPU_SETSIZE / __NCPUBITS];
} cpu_set_t;
#define CPU_SET(cpu, cpusetp) ((cpusetp)->__bits[(cpu) / __NCPUBITS] |= (1UL << ((cpu) % __NCPUBITS)))
#define CPU_ZERO(cpusetp) memset((cpusetp), 0, sizeof(cpu_set_t))
// set affinity for thread
#ifdef __GLIBC__
pid_t pid = syscall(SYS_gettid);
#else
#ifdef PI3
pid_t pid = getpid();
#else
pid_t pid = gettid();
#endif
#endif
cpu_set_t mask;
CPU_ZERO(&mask);
for (int i = 0; i < (int)cpuIDs.size(); i++) {
CPU_SET(cpuIDs[i], &mask);
}
int syscallret = syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask);
if (syscallret) {
MNN_PRINT("syscall error %d\n", syscallret);
return -1;
}
return 0;
}
#endif // arch
int MNNSetCPUThreadsMode(MNNCPUThreadsMode mode) {
#ifdef __ANDROID__
auto numberOfCPUs = getNumberOfCPU();
if (mode == MNN_CPU_MODE_DEFAULT) {
return 0;
}
static std::vector<int> sortedCPUIDs;
static int littleClusterOffset = 0;
if (sortedCPUIDs.empty()) {
sortedCPUIDs.resize(numberOfCPUs);
for (int i = 0; i < numberOfCPUs; ++i) {
sortedCPUIDs[i] = i;
}
sortCPUIDByMaxFrequency(sortedCPUIDs, &littleClusterOffset);
}
if (littleClusterOffset == 0 && mode != MNN_CPU_MODE_POWER_FRI) {
MNN_PRINT("This CPU Arch Do NOT support for setting cpu thread mode\n");
}
std::vector<int> cpuAttachIDs;
switch (mode) {
case MNN_CPU_MODE_POWER_FRI:
cpuAttachIDs = sortedCPUIDs;
break;
case MNN_CPU_MODE_LITTLE:
cpuAttachIDs = std::vector<int>(sortedCPUIDs.begin() + littleClusterOffset, sortedCPUIDs.end());
break;
case MNN_CPU_MODE_BIG:
cpuAttachIDs = std::vector<int>(sortedCPUIDs.begin(), sortedCPUIDs.begin() + littleClusterOffset);
break;
default:
cpuAttachIDs = sortedCPUIDs;
break;
}
#ifdef _OPENMP
const int threadsNumber = cpuAttachIDs.size();
omp_set_num_threads(threadsNumber);
std::vector<int> result(threadsNumber, 0);
#pragma omp parallel for
for (int i = 0; i < threadsNumber; ++i) {
result[i] = setSchedAffinity(cpuAttachIDs);
}
for (int i = 0; i < threadsNumber; ++i) {
if (result[i] != 0) {
return -1;
}
}
#else
int res = setSchedAffinity(cpuAttachIDs);
if (res != 0) {
return -1;
}
#endif // _OPENMP
return 0;
#elif __IOS__
return -1;
#else
return -1;
#endif // arch
}
float MNNGetCPUFlops(uint32_t number) {
float flops = 2048.0f;
#ifdef __ANDROID__
auto numberOfCPUs = getNumberOfCPU();
if (0 == numberOfCPUs) {
return flops;
}
std::vector<int> freqs;
freqs.resize(numberOfCPUs);
for (int i = 0; i < numberOfCPUs; ++i) {
freqs[i] = getCPUMaxFreqKHz(i);
}
std::sort(freqs.rbegin(), freqs.rend());
number = std::min(number, numberOfCPUs);
flops = 0.0f;
for (uint32_t i = 0; i < number; ++i) {
flops += (float)freqs[i] / 1024.0f;
}
#endif
return flops;
}
// cpuinfo
// Reference from: https://github.com/pytorch/cpuinfo
#ifdef __ANDROID__
#define CPUINFO_ARM_MIDR_IMPLEMENTER_MASK UINT32_C(0xFF000000)
#define CPUINFO_ARM_MIDR_VARIANT_MASK UINT32_C(0x00F00000)
#define CPUINFO_ARM_MIDR_ARCHITECTURE_MASK UINT32_C(0x000F0000)
#define CPUINFO_ARM_MIDR_PART_MASK UINT32_C(0x0000FFF0)
#define CPUINFO_ARM_MIDR_REVISION_MASK UINT32_C(0x0000000F)
#define CPUINFO_ARM_LINUX_VALID_ARCHITECTURE UINT32_C(0x00010000)
#define CPUINFO_ARM_LINUX_VALID_IMPLEMENTER UINT32_C(0x00020000)
#define CPUINFO_ARM_LINUX_VALID_VARIANT UINT32_C(0x00040000)
#define CPUINFO_LINUX_FLAG_VALID UINT32_C(0x00001000)
#define CPUINFO_ARM_LINUX_VALID_MIDR UINT32_C(0x003F0000)
#define CPUINFO_ARM_LINUX_VALID_PART UINT32_C(0x00080000)
#define CPUINFO_ARM_LINUX_VALID_PROCESSOR UINT32_C(0x00200000)
#define CPUINFO_ARM_LINUX_VALID_REVISION UINT32_C(0x00100000)
#define CPUINFO_ARM_MIDR_IMPLEMENTER_OFFSET 24
#define CPUINFO_ARM_MIDR_VARIANT_OFFSET 20
#define CPUINFO_ARM_MIDR_ARCHITECTURE_OFFSET 16
#define CPUINFO_ARM_MIDR_PART_OFFSET 4
#define CPUINFO_ARM_MIDR_REVISION_OFFSET 0
#ifdef __aarch64__
#define CPUINFO_ARM_LINUX_FEATURE_FPHP UINT32_C(0x00000200)
#define CPUINFO_ARM_LINUX_FEATURE_ASIMDHP UINT32_C(0x00000400)
#define CPUINFO_ARM_LINUX_FEATURE_ASIMDDP UINT32_C(0x00100000)
// ref: https://cs.android.com/android/platform/superproject/+/master:bionic/libc/kernel/uapi/asm-arm64/asm/hwcap.h;drc=04da58f5b3bc40dbbafb4f8422aa2991479d9e1e;l=70
#define CPUINFO_ARM_LINUX_FEATURE_I8MM UINT32_C(0x00002000)
#define CPUINFO_ARM_LINUX_FEATURE_SVE UINT32_C(0x00400000)
#define CPUINFO_ARM_LINUX_FEATURE_SVE2 UINT32_C(0x00000002)
#else
#define CPUINFO_ARM_LINUX_FEATURE_HALF UINT32_C(0x00000002)
#define CPUINFO_ARM_LINUX_FEATURE_NEON UINT32_C(0x00001000)
#endif
struct cpuinfo_arm_linux_processor {
uint32_t architecture_version;
// Main ID Register value
uint32_t midr;
uint32_t max_frequency;
uint32_t min_frequency;
uint32_t system_processor_id;
uint32_t flags;
};
struct proc_cpuinfo_parser_state {
char* hardware;
uint32_t processor_index;
uint32_t max_processors_count;
struct cpuinfo_arm_linux_processor* processors;
struct cpuinfo_arm_linux_processor dummy_processor;
};
typedef bool (*cpuinfo_line_callback)(const char*, const char*, void*, uint64_t);
inline static uint32_t midr_set_implementer(uint32_t midr, uint32_t implementer) {
return (midr & ~CPUINFO_ARM_MIDR_IMPLEMENTER_MASK) |
((implementer << CPUINFO_ARM_MIDR_IMPLEMENTER_OFFSET) & CPUINFO_ARM_MIDR_IMPLEMENTER_MASK);
}
inline static uint32_t midr_set_architecture(uint32_t midr, uint32_t architecture) {
return (midr & ~CPUINFO_ARM_MIDR_ARCHITECTURE_MASK) |
((architecture << CPUINFO_ARM_MIDR_ARCHITECTURE_OFFSET) & CPUINFO_ARM_MIDR_ARCHITECTURE_MASK);
}
inline static uint32_t midr_set_part(uint32_t midr, uint32_t part) {
return (midr & ~CPUINFO_ARM_MIDR_PART_MASK) | ((part << CPUINFO_ARM_MIDR_PART_OFFSET) & CPUINFO_ARM_MIDR_PART_MASK);
}
inline static uint32_t midr_set_revision(uint32_t midr, uint32_t revision) {
return (midr & ~CPUINFO_ARM_MIDR_REVISION_MASK) |
((revision << CPUINFO_ARM_MIDR_REVISION_OFFSET) & CPUINFO_ARM_MIDR_REVISION_MASK);
}
inline static uint32_t midr_set_variant(uint32_t midr, uint32_t variant) {
return (midr & ~CPUINFO_ARM_MIDR_VARIANT_MASK) |
((variant << CPUINFO_ARM_MIDR_VARIANT_OFFSET) & CPUINFO_ARM_MIDR_VARIANT_MASK);
}
inline static uint32_t midr_get_variant(uint32_t midr) {
return (midr & CPUINFO_ARM_MIDR_VARIANT_MASK) >> CPUINFO_ARM_MIDR_VARIANT_OFFSET;
}
static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
return (bitfield & mask) == mask;
}
static void parse_cpu_part(const char* cpu_part_start, const char* cpu_part_end,
struct cpuinfo_arm_linux_processor* processor) {
const size_t cpu_part_length = (size_t)(cpu_part_end - cpu_part_start);
/*
* CPU part should contain hex prefix (0x) and one to three hex digits.
* I have never seen less than three digits as a value of this field,
* but I don't think it is impossible to see such values in future.
* Value can not contain more than three hex digits since
* Main ID Register (MIDR) assigns only a 12-bit value for CPU part.
*/
if (cpu_part_length < 3 || cpu_part_length > 5) {
MNN_PRINT("CPU part %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)\n", (int)cpu_part_length,
cpu_part_start, cpu_part_length);
return;
}
/* Verify the presence of hex prefix */
if (cpu_part_start[0] != '0' || cpu_part_start[1] != 'x') {
MNN_PRINT("CPU part %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix\n", (int)cpu_part_length,
cpu_part_start);
return;
}
/* Verify that characters after hex prefix are hexadecimal digits and decode them */
uint32_t cpu_part = 0;
for (const char* digit_ptr = cpu_part_start + 2; digit_ptr != cpu_part_end; digit_ptr++) {
const char digit_char = *digit_ptr;
uint32_t digit;
if (digit_char >= '0' && digit_char <= '9') {
digit = digit_char - '0';
} else if ((uint32_t)(digit_char - 'A') < 6) {
digit = 10 + (digit_char - 'A');
} else if ((uint32_t)(digit_char - 'a') < 6) {
digit = 10 + (digit_char - 'a');
} else {
MNN_PRINT("CPU part %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character %c at offset %zu\n",
(int)cpu_part_length, cpu_part_start, digit_char, (size_t)(digit_ptr - cpu_part_start));
return;
}
cpu_part = cpu_part * 16 + digit;
}
processor->midr = midr_set_part(processor->midr, cpu_part);
processor->flags |= CPUINFO_ARM_LINUX_VALID_PART | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}
static void parse_cpu_revision(const char* cpu_revision_start, const char* cpu_revision_end,
struct cpuinfo_arm_linux_processor* processor) {
uint32_t cpu_revision = 0;
for (const char* digit_ptr = cpu_revision_start; digit_ptr != cpu_revision_end; digit_ptr++) {
const uint32_t digit = (uint32_t)(*digit_ptr - '0');
/* Verify that the character in CPU revision is a decimal digit */
if (digit >= 10) {
MNN_PRINT(
"CPU revision %.*s in /proc/cpuinfo is ignored due to unexpected non-digit character '%c' at offset "
"%zu\n",
(int)(cpu_revision_end - cpu_revision_start), cpu_revision_start, *digit_ptr,
(size_t)(digit_ptr - cpu_revision_start));
return;
}
cpu_revision = cpu_revision * 10 + digit;
}
processor->midr = midr_set_revision(processor->midr, cpu_revision);
processor->flags |= CPUINFO_ARM_LINUX_VALID_REVISION | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}
static void parse_cpu_architecture(const char* cpu_architecture_start, const char* cpu_architecture_end,
struct cpuinfo_arm_linux_processor* processor) {
const size_t cpu_architecture_length = (size_t)(cpu_architecture_end - cpu_architecture_start);
/* Early AArch64 kernels report "CPU architecture: AArch64" instead of a numeric value 8 */
if (cpu_architecture_length == 7) {
if (memcmp(cpu_architecture_start, "AArch64", cpu_architecture_length) == 0) {
processor->midr = midr_set_architecture(processor->midr, UINT32_C(0xF));
processor->architecture_version = 8;
processor->flags |= CPUINFO_ARM_LINUX_VALID_ARCHITECTURE | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
return;
}
}
uint32_t architecture = 0;
const char* cpu_architecture_ptr = cpu_architecture_start;
for (; cpu_architecture_ptr != cpu_architecture_end; cpu_architecture_ptr++) {
const uint32_t digit = (*cpu_architecture_ptr) - '0';
/* Verify that CPU architecture is a decimal number */
if (digit >= 10) {
break;
}
architecture = architecture * 10 + digit;
}
if (cpu_architecture_ptr == cpu_architecture_start) {
MNN_PRINT("CPU architecture %.*s in /proc/cpuinfo is ignored due to non-digit at the beginning of the string\n",
(int)cpu_architecture_length, cpu_architecture_start);
} else {
if (architecture != 0) {
processor->architecture_version = architecture;
processor->flags |= CPUINFO_ARM_LINUX_VALID_ARCHITECTURE | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
for (; cpu_architecture_ptr != cpu_architecture_end; cpu_architecture_ptr++) {
const char feature = *cpu_architecture_ptr;
switch (feature) {
case ' ':
case '\t':
/* Ignore whitespace at the end */
break;
default:
MNN_PRINT("skipped unknown architectural feature '%c' for ARMv%u\n", feature, architecture);
break;
}
}
} else {
MNN_PRINT("CPU architecture %.*s in /proc/cpuinfo is ignored due to invalid value (0)\n",
(int)cpu_architecture_length, cpu_architecture_start);
}
}
uint32_t midr_architecture = UINT32_C(0xF);
processor->midr = midr_set_architecture(processor->midr, midr_architecture);
}
static uint32_t parse_processor_number(const char* processor_start, const char* processor_end) {
const size_t processor_length = (size_t)(processor_end - processor_start);
if (processor_length == 0) {
MNN_PRINT("Processor number in /proc/cpuinfo is ignored: string is empty\n");
return 0;
}
uint32_t processor_number = 0;
for (const char* digit_ptr = processor_start; digit_ptr != processor_end; digit_ptr++) {
const uint32_t digit = (uint32_t)(*digit_ptr - '0');
if (digit > 10) {
MNN_PRINT("non-decimal suffix %.*s in /proc/cpuinfo processor number is ignored\n",
(int)(processor_end - digit_ptr), digit_ptr);
break;
}
processor_number = processor_number * 10 + digit;
}
return processor_number;
}
static void parse_cpu_variant(const char* cpu_variant_start, const char* cpu_variant_end,
struct cpuinfo_arm_linux_processor* processor) {
const size_t cpu_variant_length = cpu_variant_end - cpu_variant_start;
/*
* Value should contain hex prefix (0x) and one hex digit.
* Value can not contain more than one hex digits since
* Main ID Register (MIDR) assigns only a 4-bit value for CPU variant.
*/
if (cpu_variant_length != 3) {
MNN_PRINT("CPU variant %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)\n",
(int)cpu_variant_length, cpu_variant_start, cpu_variant_length);
return;
}
/* Skip if there is no hex prefix (0x) */
if (cpu_variant_start[0] != '0' || cpu_variant_start[1] != 'x') {
MNN_PRINT("CPU variant %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix\n", (int)cpu_variant_length,
cpu_variant_start);
return;
}
/* Check if the value after hex prefix is indeed a hex digit and decode it. */
const char digit_char = cpu_variant_start[2];
uint32_t cpu_variant;
if ((uint32_t)(digit_char - '0') < 10) {
cpu_variant = (uint32_t)(digit_char - '0');
} else if ((uint32_t)(digit_char - 'A') < 6) {
cpu_variant = 10 + (uint32_t)(digit_char - 'A');
} else if ((uint32_t)(digit_char - 'a') < 6) {
cpu_variant = 10 + (uint32_t)(digit_char - 'a');
} else {
MNN_PRINT("CPU variant %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character '%c'\n",
(int)cpu_variant_length, cpu_variant_start, digit_char);
return;
}
processor->midr = midr_set_variant(processor->midr, cpu_variant);
processor->flags |= CPUINFO_ARM_LINUX_VALID_VARIANT | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}
static void parse_cpu_implementer(const char* cpu_implementer_start, const char* cpu_implementer_end,
struct cpuinfo_arm_linux_processor* processor) {
const size_t cpu_implementer_length = cpu_implementer_end - cpu_implementer_start;
/*
* Value should contain hex prefix (0x) and one or two hex digits.
* I have never seen single hex digit as a value of this field,
* but I don't think it is impossible in future.
* Value can not contain more than two hex digits since
* Main ID Register (MIDR) assigns only an 8-bit value for CPU implementer.
*/
switch (cpu_implementer_length) {
case 3:
case 4:
break;
default:
MNN_PRINT("CPU implementer %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)\n",
(int)cpu_implementer_length, cpu_implementer_start, cpu_implementer_length);
return;
}
/* Verify the presence of hex prefix */
if (cpu_implementer_start[0] != '0' || cpu_implementer_start[1] != 'x') {
MNN_PRINT("CPU implementer %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix\n",
(int)cpu_implementer_length, cpu_implementer_start);
return;
}
/* Verify that characters after hex prefix are hexadecimal digits and decode them */
uint32_t cpu_implementer = 0;
for (const char* digit_ptr = cpu_implementer_start + 2; digit_ptr != cpu_implementer_end; digit_ptr++) {
const char digit_char = *digit_ptr;
uint32_t digit;
if (digit_char >= '0' && digit_char <= '9') {
digit = digit_char - '0';
} else if ((uint32_t)(digit_char - 'A') < 6) {
digit = 10 + (digit_char - 'A');
} else if ((uint32_t)(digit_char - 'a') < 6) {
digit = 10 + (digit_char - 'a');
} else {
MNN_PRINT(
"CPU implementer %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character '%c' at offset "
"%zu\n",
(int)cpu_implementer_length, cpu_implementer_start, digit_char,
(size_t)(digit_ptr - cpu_implementer_start));
return;
}
cpu_implementer = cpu_implementer * 16 + digit;
}
processor->midr = midr_set_implementer(processor->midr, cpu_implementer);
processor->flags |= CPUINFO_ARM_LINUX_VALID_IMPLEMENTER | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}
static bool parse_line(const char* line_start, const char* line_end, struct proc_cpuinfo_parser_state* state,
uint64_t line_number) {
/* Empty line. Skip. */
if (line_start == line_end) {
return true;
}
/* Search for ':' on the line. */
const char* separator = line_start;
for (; separator != line_end; separator++) {
if (*separator == ':') {
break;
}
}
/* Skip line if no ':' separator was found. */
if (separator == line_end) {
MNN_PRINT("Line %.*s in /proc/cpuinfo is ignored: key/value separator ':' not found\n",
(int)(line_end - line_start), line_start);
return true;
}
/* Skip trailing spaces in key part. */
const char* key_end = separator;
for (; key_end != line_start; key_end--) {
if (key_end[-1] != ' ' && key_end[-1] != '\t') {
break;
}
}
/* Skip line if key contains nothing but spaces. */
if (key_end == line_start) {
MNN_PRINT("Line %.*s in /proc/cpuinfo is ignored: key contains only spaces\n", (int)(line_end - line_start),
line_start);
return true;
}
/* Skip leading spaces in value part. */
const char* value_start = separator + 1;
for (; value_start != line_end; value_start++) {
if (*value_start != ' ') {
break;
}
}
/* Value part contains nothing but spaces. Skip line. */
if (value_start == line_end) {
MNN_PRINT("Line %.*s in /proc/cpuinfo is ignored: value contains only spaces\n", (int)(line_end - line_start),
line_start);
return true;
}
/* Skip trailing spaces in value part (if any) */
const char* value_end = line_end;
for (; value_end != value_start; value_end--) {
if (value_end[-1] != ' ') {
break;
}
}
const uint32_t processor_index = state->processor_index;
const uint32_t max_processors_count = state->max_processors_count;
struct cpuinfo_arm_linux_processor* processors = state->processors;
struct cpuinfo_arm_linux_processor* processor = &state->dummy_processor;
if (processor_index < max_processors_count) {
processor = &processors[processor_index];
}
const size_t key_length = key_end - line_start;
switch (key_length) {
case 6:
break;
case 8:
if (memcmp(line_start, "CPU part", key_length) == 0) {
parse_cpu_part(value_start, value_end, processor);
} else if (memcmp(line_start, "Features", key_length) == 0) {
/* parse_features(value_start, value_end, processor); */
} else if (memcmp(line_start, "BogoMIPS", key_length) == 0) {
/* BogoMIPS is useless, don't parse */
} else if (memcmp(line_start, "Hardware", key_length) == 0) {
size_t value_length = value_end - value_start;
if (value_length > CPUINFO_HARDWARE_VALUE_MAX) {
MNN_PRINT(
"length of Hardware value \"%.*s\" in /proc/cpuinfo exceeds limit (%d): truncating to the "
"limit\n",
(int)value_length, value_start, CPUINFO_HARDWARE_VALUE_MAX);
value_length = CPUINFO_HARDWARE_VALUE_MAX;
} else {
state->hardware[value_length] = '\0';
}
memcpy(state->hardware, value_start, value_length);
MNN_PRINT("parsed /proc/cpuinfo Hardware = \"%.*s\"\n", (int)value_length, value_start);
} else if (memcmp(line_start, "Revision", key_length) == 0) {
/* Board revision, no use for now */
}
break;
case 9:
if (memcmp(line_start, "processor", key_length) == 0) {
const uint32_t new_processor_index = parse_processor_number(value_start, value_end);
if (new_processor_index < processor_index) {
/* Strange: decreasing processor number */
MNN_PRINT("unexpectedly low processor number %u following processor %u in /proc/cpuinfo\n",
new_processor_index, processor_index);
} else if (new_processor_index > processor_index + 1) {
/* Strange, but common: skipped processor $(processor_index + 1) */
MNN_PRINT("unexpectedly high processor number %u following processor %u in /proc/cpuinfo\n",
new_processor_index, processor_index);
}
if (new_processor_index < max_processors_count) {
/* Record that the processor was mentioned in /proc/cpuinfo */
processors[new_processor_index].flags |= CPUINFO_ARM_LINUX_VALID_PROCESSOR;
} else {
/* Log and ignore processor */
MNN_PRINT("processor %u in /proc/cpuinfo is ignored: index exceeds system limit %u\n",
new_processor_index, max_processors_count - 1);
}
state->processor_index = new_processor_index;
return true;
} else if (memcmp(line_start, "Processor", key_length) == 0) {
/* TODO: parse to fix misreported architecture, similar to Android's cpufeatures */
}
break;
case 11:
if (memcmp(line_start, "CPU variant", key_length) == 0) {
parse_cpu_variant(value_start, value_end, processor);
}
break;
case 12:
if (memcmp(line_start, "CPU revision", key_length) == 0) {
parse_cpu_revision(value_start, value_end, processor);
}
break;
case 15:
if (memcmp(line_start, "CPU implementer", key_length) == 0) {
parse_cpu_implementer(value_start, value_end, processor);
} else if (memcmp(line_start, "CPU implementor", key_length) == 0) {
parse_cpu_implementer(value_start, value_end, processor);
}
break;
case 16:
if (memcmp(line_start, "CPU architecture", key_length) == 0) {
parse_cpu_architecture(value_start, value_end, processor);
}
break;
default:
break;
}
return true;
}
bool cpuinfo_linux_parse_multiline_file(const char* filename, size_t buffer_size, cpuinfo_line_callback callback,
void* context) {
#define RETIEMENT \
if (file != -1) { \
close(file); \
file = -1; \
} \
return false;
int file = -1;
bool status = false;
char* buffer = (char*)alloca(buffer_size);
file = open(filename, O_RDONLY);
if (file == -1) {
MNN_PRINT("failed to open %s\n", filename);
RETIEMENT
}
/* Only used for error reporting */
size_t position = 0;
uint64_t line_number = 1;
const char* buffer_end = &buffer[buffer_size];
char* data_start = buffer;
ssize_t bytes_read;
do {
bytes_read = read(file, data_start, (size_t)(buffer_end - data_start));
if (bytes_read < 0) {
MNN_PRINT("failed to read file %s at position %zu\n", filename, position);
RETIEMENT
}
position += (size_t)bytes_read;
const char* data_end = data_start + (size_t)bytes_read;
const char* line_start = buffer;
if (bytes_read == 0) {
/* No more data in the file: process the remaining text in the buffer as a single entry */
const char* line_end = data_end;
if (!callback(line_start, line_end, context, line_number)) {
RETIEMENT
}
} else {
const char* line_end;
do {
/* Find the end of the entry, as indicated by newline character ('\n') */
for (line_end = line_start; line_end != data_end; line_end++) {
if (*line_end == '\n') {
break;
}
}
/*
* If we located separator at the end of the entry, parse it.
* Otherwise, there may be more data at the end; read the file once again.
*/
if (line_end != data_end) {
if (!callback(line_start, line_end, context, line_number++)) {
RETIEMENT
}
line_start = line_end + 1;
}
} while (line_end != data_end);
/* Move remaining partial line data at the end to the beginning of the buffer */
const size_t line_length = (size_t)(line_end - line_start);
memmove(buffer, line_start, line_length);
data_start = &buffer[line_length];
}
} while (bytes_read != 0);
/* Commit */
status = true;
if (file != -1) {
close(file);
file = -1;
}
return status;
}
bool cpuinfo_arm_linux_parse_proc_cpuinfo(char* hardware, uint32_t max_processors_count,
struct cpuinfo_arm_linux_processor* processors) {
struct proc_cpuinfo_parser_state state = {
.hardware = hardware,
.processor_index = 0,
.max_processors_count = max_processors_count,
.processors = processors,
};
return cpuinfo_linux_parse_multiline_file("/proc/cpuinfo", BUFFER_SIZE, (cpuinfo_line_callback)parse_line, &state);
}
static inline int cpuinfo_android_property_get(const char* key, char* value) {
return __system_property_get(key, value);
}
void cpuinfo_arm_android_parse_properties(struct cpuinfo_android_properties* properties) {
cpuinfo_android_property_get("ro.product.board", properties->ro_product_board);
cpuinfo_android_property_get("ro.board.platform", properties->ro_board_platform);
cpuinfo_android_property_get("ro.mediatek.platform", properties->ro_mediatek_platform);
cpuinfo_android_property_get("ro.arch", properties->ro_arch);
cpuinfo_android_property_get("ro.chipname", properties->ro_chipname);
cpuinfo_android_property_get("ro.hardware.chipname", properties->ro_hardware_chipname);
}
static inline uint16_t load_u16le(const void* ptr) {
return *((const uint16_t*)ptr);
}
static inline uint32_t load_u32le(const void* ptr) {
return *((const uint32_t*)ptr);
}
/**
* Tries to match /Samsung Exynos\d{4}$/ signature (case-insensitive) for Samsung Exynos chipsets.
* If match successful, extracts model information into \p chipset argument.
*
* @param start - start of the /proc/cpuinfo Hardware string to match.
* @param end - end of the /proc/cpuinfo Hardware string to match.
* @param[out] chipset - location where chipset information will be stored upon a successful match.
*
* @returns true if signature matched, false otherwise.
*/
static bool match_samsung_exynos(const char* start, const char* end, struct cpuinfo_arm_chipset* chipset) {
/*
* Expect at 18-19 symbols:
* - "Samsung" (7 symbols) + space + "Exynos" (6 symbols) + optional space 4-digit model number
*/
const size_t length = end - start;
switch (length) {
case 18:
case 19:
break;
default:
return false;
}
/*
* Check that the string starts with "samsung exynos", case-insensitive.
* Blocks of 4 characters are loaded and compared as little-endian 32-bit word.
* Case-insensitive characters are binary ORed with 0x20 to convert them to lowercase.
*/
const uint32_t expected_sams = UINT32_C(0x20202000) | load_u32le(start);
if (expected_sams != UINT32_C(0x736D6153) /* "smaS" = reverse("Sams") */) {
return false;
}
const uint32_t expected_ung = UINT32_C(0x00202020) | load_u32le(start + 4);
if (expected_ung != UINT32_C(0x20676E75) /* " ung" = reverse("ung ") */) {
return false;
}
const uint32_t expected_exyn = UINT32_C(0x20202000) | load_u32le(start + 8);
if (expected_exyn != UINT32_C(0x6E797845) /* "nyxE" = reverse("Exyn") */) {
return false;
}
const uint16_t expected_os = UINT16_C(0x2020) | load_u16le(start + 12);
if (expected_os != UINT16_C(0x736F) /* "so" = reverse("os") */) {
return false;
}
const char* pos = start + 14;
/* There can be a space ' ' following the "Exynos" string */
if (*pos == ' ') {
pos++;
/* If optional space if present, we expect exactly 19 characters */
if (length != 19) {
return false;
}
}
/* Validate and parse 4-digit model number */
uint32_t model = 0;
for (uint32_t i = 0; i < 4; i++) {
const uint32_t digit = (uint32_t)(uint8_t)(*pos++) - '0';
if (digit >= 10) {
/* Not really a digit */
return false;
}
model = model * 10 + digit;
}
/* Return parsed chipset */
*chipset = (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_samsung,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = model,
};
return true;
}
/**
* Tries to match /exynos\d{4}$/ signature for Samsung Exynos chipsets.
* If match successful, extracts model information into \p chipset argument.
*
* @param start - start of the platform identifier (ro.board.platform or ro.chipname) to match.
* @param end - end of the platform identifier (ro.board.platform or ro.chipname) to match.
* @param[out] chipset - location where chipset information will be stored upon a successful match.
*
* @returns true if signature matched, false otherwise.
*/
static bool match_exynos(const char* start, const char* end, struct cpuinfo_arm_chipset* chipset) {
/* Expect exactly 10 symbols: "exynos" (6 symbols) + 4-digit model number */
if (start + 10 != end) {
return false;
}
/* Load first 4 bytes as little endian 32-bit word */
const uint32_t expected_exyn = load_u32le(start);
if (expected_exyn != UINT32_C(0x6E797865) /* "nyxe" = reverse("exyn") */) {
return false;
}
/* Load next 2 bytes as little endian 16-bit word */
const uint16_t expected_os = load_u16le(start + 4);
if (expected_os != UINT16_C(0x736F) /* "so" = reverse("os") */) {
return false;
}
/* Check and parse 4-digit model number */
uint32_t model = 0;
for (uint32_t i = 6; i < 10; i++) {
const uint32_t digit = (uint32_t)(uint8_t)start[i] - '0';
if (digit >= 10) {
/* Not really a digit */
return false;
}
model = model * 10 + digit;
}
/* Return parsed chipset. */
*chipset = (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_samsung,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = model,
};
return true;
}
/**
* Tries to match /universal\d{4}$/ signature for Samsung Exynos chipsets.
* If match successful, extracts model information into \p chipset argument.
*
* @param start - start of the platform identifier (/proc/cpuinfo Hardware string, ro.product.board or ro.chipname)
* to match.
* @param end - end of the platform identifier (/proc/cpuinfo Hardware string, ro.product.board or ro.chipname)
* to match.
* @param[out] chipset - location where chipset information will be stored upon a successful match.
*
* @returns true if signature matched, false otherwise.
*/
static bool match_universal(const char* start, const char* end, struct cpuinfo_arm_chipset* chipset) {
/* Expect exactly 13 symbols: "universal" (9 symbols) + 4-digit model number */
if (start + 13 != end) {
return false;
}
/*
* Check that the string starts with "universal".
* Blocks of 4 characters are loaded and compared as little-endian 32-bit word.
* Case-insensitive characters are binary ORed with 0x20 to convert them to lowercase.
*/
const uint8_t expected_u = UINT8_C(0x20) | (uint8_t)start[0];
if (expected_u != UINT8_C(0x75) /* "u" */) {
return false;
}
const uint32_t expected_nive = UINT32_C(0x20202020) | load_u32le(start + 1);
if (expected_nive != UINT32_C(0x6576696E) /* "evin" = reverse("nive") */) {
return false;
}
const uint32_t expected_ersa = UINT32_C(0x20202020) | load_u32le(start + 5);
if (expected_ersa != UINT32_C(0x6C617372) /* "lasr" = reverse("rsal") */) {
return false;
}
/* Validate and parse 4-digit model number */
uint32_t model = 0;
for (uint32_t i = 9; i < 13; i++) {
const uint32_t digit = (uint32_t)(uint8_t)start[i] - '0';
if (digit >= 10) {
/* Not really a digit */
return false;
}
model = model * 10 + digit;
}
/* Return parsed chipset. */
*chipset = (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_samsung,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = model,
};
return true;
}
struct cpuinfo_arm_chipset cpuinfo_arm_linux_decode_chipset_from_proc_cpuinfo_hardware(const char* hardware,
uint32_t cores,
uint32_t max_cpu_freq_max) {
struct cpuinfo_arm_chipset chipset;
const size_t hardware_length = strnlen(hardware, CPUINFO_HARDWARE_VALUE_MAX);
const char* hardware_end = hardware + hardware_length;
if (match_samsung_exynos(hardware, hardware_end, &chipset)) {
return chipset;
}
if (match_universal(hardware, hardware_end, &chipset)) {
return chipset;
}
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset_from_ro_product_board(const char* ro_product_board,
uint32_t cores,
uint32_t max_cpu_freq_max) {
struct cpuinfo_arm_chipset chipset;
const char* board = ro_product_board;
const size_t board_length = strnlen(ro_product_board, CPUINFO_BUILD_PROP_VALUE_MAX);
const char* board_end = ro_product_board + board_length;
if (match_universal(board, board_end, &chipset)) {
return chipset;
}
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset_from_ro_board_platform(const char* platform,
uint32_t cores,
uint32_t max_cpu_freq_max) {
struct cpuinfo_arm_chipset chipset;
const size_t platform_length = strnlen(platform, CPUINFO_BUILD_PROP_VALUE_MAX);
const char* platform_end = platform + platform_length;
if (match_exynos(platform, platform_end, &chipset)) {
return chipset;
}
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset_from_ro_mediatek_platform(const char* platform) {
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset_from_ro_arch(const char* arch) {
struct cpuinfo_arm_chipset chipset;
const char* arch_end = arch + strnlen(arch, CPUINFO_BUILD_PROP_VALUE_MAX);
/* Check Samsung exynosXXXX signature */
if (match_exynos(arch, arch_end, &chipset)) {
return chipset;
}
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset_from_ro_chipname(const char* chipname) {
struct cpuinfo_arm_chipset chipset;
const size_t chipname_length = strnlen(chipname, CPUINFO_BUILD_PROP_VALUE_MAX);
const char* chipname_end = chipname + chipname_length;
if (match_exynos(chipname, chipname_end, &chipset)) {
return chipset;
}
if (match_universal(chipname, chipname_end, &chipset)) {
return chipset;
}
return (struct cpuinfo_arm_chipset){
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
}
struct cpuinfo_arm_chipset cpuinfo_arm_android_decode_chipset(const struct cpuinfo_android_properties* properties,
uint32_t cores, uint32_t max_cpu_freq_max) {
// this function is used to decode chipset, which is only used to detect Samsung Exynos chipsets
// so chipesets now only have TWO classes, one is cpuinfo_arm_chipset_vendor_samsung, the other is
// cpuinfo_arm_chipset_vendor_unknown
struct cpuinfo_arm_chipset chipset = {
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
struct cpuinfo_arm_chipset chipsets[cpuinfo_android_chipset_property_max] = {
[cpuinfo_android_chipset_property_proc_cpuinfo_hardware] =
cpuinfo_arm_linux_decode_chipset_from_proc_cpuinfo_hardware(properties->proc_cpuinfo_hardware, cores,
max_cpu_freq_max),
[cpuinfo_android_chipset_property_ro_product_board] = cpuinfo_arm_android_decode_chipset_from_ro_product_board(
properties->ro_product_board, cores, max_cpu_freq_max),
[cpuinfo_android_chipset_property_ro_board_platform] =
cpuinfo_arm_android_decode_chipset_from_ro_board_platform(properties->ro_board_platform, cores,
max_cpu_freq_max),
[cpuinfo_android_chipset_property_ro_mediatek_platform] =
cpuinfo_arm_android_decode_chipset_from_ro_mediatek_platform(properties->ro_mediatek_platform),
[cpuinfo_android_chipset_property_ro_arch] =
cpuinfo_arm_android_decode_chipset_from_ro_arch(properties->ro_arch),
[cpuinfo_android_chipset_property_ro_chipname] =
cpuinfo_arm_android_decode_chipset_from_ro_chipname(properties->ro_chipname),
[cpuinfo_android_chipset_property_ro_hardware_chipname] =
cpuinfo_arm_android_decode_chipset_from_ro_chipname(properties->ro_hardware_chipname),
};
enum cpuinfo_arm_chipset_vendor vendor = cpuinfo_arm_chipset_vendor_unknown;
for (size_t i = 0; i < cpuinfo_android_chipset_property_max; ++i) {
const enum cpuinfo_arm_chipset_vendor decoded_vendor = chipsets[i].vendor;
if (decoded_vendor != cpuinfo_arm_chipset_vendor_unknown) {
if (vendor == cpuinfo_arm_chipset_vendor_unknown) {
vendor = decoded_vendor;
} else if (vendor != decoded_vendor) {
// MNN_PRINT(
// "[MNN WARNING] chipset detection failed: different chipset vendors reported in different system "
// "properties\n");
return chipset;
}
}
}
if (vendor == cpuinfo_arm_chipset_vendor_unknown) {
// MNN_PRINT("[MNN WARNING] chipset detection failed: none of the system properties matched known signatures\n");
return chipset;
}
for (size_t i = 0; i < cpuinfo_android_chipset_property_max; ++i) {
if (chipsets[i].series != cpuinfo_arm_chipset_series_unknown) {
chipset = chipsets[i];
break;
}
}
// MNN_PRINT("chipset vendor, series, model is: %d, %d, %d\n", chipset.vendor, chipset.series, chipset.model);
return chipset;
}
#endif // __ANDROID__
#if defined(__APPLE__) && defined(__aarch64__)
static uint32_t get_sys_info_by_name(const char* type_specifier) {
size_t size = 0;
uint32_t result = 0;
if (sysctlbyname(type_specifier, NULL, &size, NULL, 0) != 0) {
MNN_PRINT("sysctlbyname(\"%s\") failed\n", type_specifier);
} else if (size == sizeof(uint32_t)) {
sysctlbyname(type_specifier, &result, &size, NULL, 0);
MNN_PRINT("%s: %u , size = %lu\n", type_specifier, result, size);
} else {
MNN_PRINT("sysctl does not support non-integer lookup for (\"%s\")\n", type_specifier);
}
return result;
}
#endif // iOS
void cpuinfo_arm_init(struct cpuinfo_arm_isa* cpuinfo_isa) {
memset(cpuinfo_isa, 0, sizeof(struct cpuinfo_arm_isa));
// android
#ifdef __ANDROID__
struct cpuinfo_arm_linux_processor* arm_linux_processors = NULL;
const uint32_t processors_count = getNumberOfCPU();
char proc_cpuinfo_hardware[CPUINFO_HARDWARE_VALUE_MAX] = {0};
arm_linux_processors = static_cast<struct cpuinfo_arm_linux_processor*>(
calloc(processors_count, sizeof(struct cpuinfo_arm_linux_processor)));
if (arm_linux_processors == NULL) {
MNN_PRINT("failed to allocate %zu bytes for descriptions of %u ARM logical processors\n",
processors_count * sizeof(struct cpuinfo_arm_linux_processor), processors_count);
return;
}
if (!cpuinfo_arm_linux_parse_proc_cpuinfo(proc_cpuinfo_hardware, processors_count, arm_linux_processors)) {
MNN_PRINT("failed to parse processor information from /proc/cpuinfo\n");
return;
}
uint32_t valid_processor_mask = 0;
for (uint32_t i = 0; i < processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, valid_processor_mask)) {
arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
}
}
uint32_t valid_processors = 0, last_midr = 0;
for (uint32_t i = 0; i < processors_count; i++) {
arm_linux_processors[i].system_processor_id = i;
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
valid_processors += 1;
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_MIDR)) {
last_midr = arm_linux_processors[i].midr;
}
}
}
uint32_t isa_features = 0;
#ifdef __aarch64__
isa_features = (uint32_t)getauxval(AT_HWCAP);
#endif
struct cpuinfo_android_properties android_properties;
cpuinfo_arm_android_parse_properties(&android_properties);
const struct cpuinfo_arm_chipset chipset =
cpuinfo_arm_android_decode_chipset(&android_properties, valid_processors, 0);
switch (last_midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK)) {
case UINT32_C(0x51008040): /* Kryo 485 Gold (Cortex-A76) */
cpuinfo_isa->dot = true;
break;
default:
#ifdef __aarch64__
if (isa_features & CPUINFO_ARM_LINUX_FEATURE_ASIMDDP) {
cpuinfo_isa->dot = true;
}
#endif
// TODO, whitelist, ex: hisilicon_kirin 980...
break;
}
#ifdef __aarch64__
const uint32_t fp16arith_mask = CPUINFO_ARM_LINUX_FEATURE_FPHP | CPUINFO_ARM_LINUX_FEATURE_ASIMDHP;
if ((isa_features & fp16arith_mask) == fp16arith_mask) {
if (chipset.series == cpuinfo_arm_chipset_series_samsung_exynos && chipset.model == 9810) {
cpuinfo_isa->fp16arith = false;
} else {
cpuinfo_isa->fp16arith = true;
}
}
if (isa_features & CPUINFO_ARM_LINUX_FEATURE_I8MM) {
cpuinfo_isa->i8mm = true;
}
/*
if (isa_features & CPUINFO_ARM_LINUX_FEATURE_SVE2) {
// MNN_PRINT("Support SVE2\n");
}
*/
#else
// pytorch/cpuinfo: src/arm/linux/aarch32-isa.c
uint32_t architecture_version = 0;
if (processors_count > 0) {
architecture_version = arm_linux_processors[0].architecture_version;
}
if (architecture_version >= 8) {
/*
* NEON FP16 compute extension and VQRDMLAH/VQRDMLSH instructions are not indicated in /proc/cpuinfo.
* Use a MIDR-based heuristic to whitelist processors known to support it:
* - Processors with Cortex-A55 cores
* - Processors with Cortex-A65 cores
* - Processors with Cortex-A75 cores
* - Processors with Cortex-A76 cores
* - Processors with Cortex-A77 cores
* - Processors with Exynos M4 cores
* - Processors with Exynos M5 cores
* - Neoverse N1 cores
*/
if (chipset.series == cpuinfo_arm_chipset_series_samsung_exynos && chipset.model == 9810) {
/* Only little cores of Exynos 9810 support FP16 & RDM */
MNN_PRINT("FP16 arithmetics and RDM disabled: only little cores in Exynos 9810 support these extensions");
} else {
switch (last_midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK)) {
case UINT32_C(0x4100D050): /* Cortex-A55 */
case UINT32_C(0x4100D060): /* Cortex-A65 */
case UINT32_C(0x4100D0B0): /* Cortex-A76 */
case UINT32_C(0x4100D0C0): /* Neoverse N1 */
case UINT32_C(0x4100D0D0): /* Cortex-A77 */
case UINT32_C(0x4100D0E0): /* Cortex-A76AE */
case UINT32_C(0x4800D400): /* Cortex-A76 (HiSilicon) */
case UINT32_C(0x51008020): /* Kryo 385 Gold (Cortex-A75) */
case UINT32_C(0x51008030): /* Kryo 385 Silver (Cortex-A55) */
case UINT32_C(0x51008040): /* Kryo 485 Gold (Cortex-A76) */
case UINT32_C(0x51008050): /* Kryo 485 Silver (Cortex-A55) */
case UINT32_C(0x53000030): /* Exynos M4 */
case UINT32_C(0x53000040): /* Exynos M5 */
cpuinfo_isa->fp16arith = true;
break;
}
}
/*
* NEON VDOT instructions are not indicated in /proc/cpuinfo.
* Use a MIDR-based heuristic to whitelist processors known to support it.
*/
switch (last_midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK)) {
case UINT32_C(0x4100D0B0): /* Cortex-A76 */
case UINT32_C(0x4100D0D0): /* Cortex-A77 */
case UINT32_C(0x4100D0E0): /* Cortex-A76AE */
case UINT32_C(0x4800D400): /* Cortex-A76 (HiSilicon) */
case UINT32_C(0x51008040): /* Kryo 485 Gold (Cortex-A76) */
case UINT32_C(0x51008050): /* Kryo 485 Silver (Cortex-A55) */
case UINT32_C(0x53000030): /* Exynos-M4 */
case UINT32_C(0x53000040): /* Exynos-M5 */
cpuinfo_isa->dot = true;
break;
case UINT32_C(0x4100D050): /* Cortex A55: revision 1 or later only */
cpuinfo_isa->dot = (midr_get_variant(last_midr) >= 1);
break;
case UINT32_C(0x4100D0A0): /* Cortex A75: revision 2 or later only */
cpuinfo_isa->dot = (midr_get_variant(last_midr) >= 2);
break;
}
}
#endif
if (arm_linux_processors) {
free(arm_linux_processors);
}
#endif // #ifdef __ANDROID__
// iOS
#if defined(__IOS__) && defined(__aarch64__)
// A11
#ifndef CPUFAMILY_ARM_MONSOON_MISTRAL
#define CPUFAMILY_ARM_MONSOON_MISTRAL 0xe81e7ef6
#endif
// A12
#ifndef CPUFAMILY_ARM_VORTEX_TEMPEST
#define CPUFAMILY_ARM_VORTEX_TEMPEST 0x07d34b9f
#endif
// A13
#ifndef CPUFAMILY_ARM_LIGHTNING_THUNDER
#define CPUFAMILY_ARM_LIGHTNING_THUNDER 0x462504d2
#endif
// A14
#ifndef CPUFAMILY_ARM_FIRESTORM_ICESTORM
#define CPUFAMILY_ARM_FIRESTORM_ICESTORM 0x1b588bb3
#endif
// A15
#ifndef CPUFAMILY_ARM_AVALANCHE_BLIZZARD
#define CPUFAMILY_ARM_AVALANCHE_BLIZZARD 0xda33d83d
#endif
// A16
#ifndef CPUFAMILY_ARM_EVEREST_SAWTOOTH
#define CPUFAMILY_ARM_EVEREST_SAWTOOTH 0x8765edea
#endif
const uint32_t cpu_family = get_sys_info_by_name("hw.cpufamily");
// const uint32_t cpu_type = get_sys_info_by_name("hw.cputype");
// const uint32_t cpu_subtype = get_sys_info_by_name("hw.cpusubtype");
cpuinfo_isa->fp16arith = cpu_family == CPUFAMILY_ARM_MONSOON_MISTRAL ||
cpu_family == CPUFAMILY_ARM_VORTEX_TEMPEST ||
cpu_family == CPUFAMILY_ARM_LIGHTNING_THUNDER ||
cpu_family == CPUFAMILY_ARM_FIRESTORM_ICESTORM ||
cpu_family == CPUFAMILY_ARM_AVALANCHE_BLIZZARD ||
cpu_family == CPUFAMILY_ARM_EVEREST_SAWTOOTH;
cpuinfo_isa->dot = cpu_family == CPUFAMILY_ARM_LIGHTNING_THUNDER ||
cpu_family == CPUFAMILY_ARM_FIRESTORM_ICESTORM ||
cpu_family == CPUFAMILY_ARM_AVALANCHE_BLIZZARD ||
cpu_family == CPUFAMILY_ARM_EVEREST_SAWTOOTH;
#endif // iOS
// arm64-osx
#if defined(__APPLE__) && defined(__aarch64__) && !defined(__IOS__)
// Apple M1
#ifndef CPUFAMILY_AARCH64_FIRESTORM_ICESTORM
#define CPUFAMILY_AARCH64_FIRESTORM_ICESTORM 0x1b588bb3
#endif
// Apple M2
#ifndef CPUFAMILY_AARCH64_AVALANCHE_BLIZZARD
#define CPUFAMILY_AARCH64_AVALANCHE_BLIZZARD 0xda33d83d
#endif
const uint32_t cpu_family = get_sys_info_by_name("hw.cpufamily");
cpuinfo_isa->fp16arith = cpu_family == CPUFAMILY_AARCH64_FIRESTORM_ICESTORM ||
cpu_family == CPUFAMILY_AARCH64_AVALANCHE_BLIZZARD;
cpuinfo_isa->dot = cpu_family == CPUFAMILY_AARCH64_FIRESTORM_ICESTORM ||
cpu_family == CPUFAMILY_AARCH64_AVALANCHE_BLIZZARD;
#endif
#ifndef __ANDROID__
#if defined (__linux__) && defined (__aarch64__)
uint32_t isa_features = 0;
isa_features = (uint32_t)getauxval(AT_HWCAP);
if (isa_features & CPUINFO_ARM_LINUX_FEATURE_ASIMDDP) {
cpuinfo_isa->dot = true;
}
const uint32_t fp16arith_mask = CPUINFO_ARM_LINUX_FEATURE_FPHP | CPUINFO_ARM_LINUX_FEATURE_ASIMDHP;
if ((isa_features & fp16arith_mask) == fp16arith_mask) {
cpuinfo_isa->fp16arith = true;
}
if (isa_features & CPUINFO_ARM_LINUX_FEATURE_I8MM) {
cpuinfo_isa->i8mm = true;
}
#endif /* __linux__ && __aarch64__ */
#endif
MNN_PRINT("The device support i8sdot:%d, support fp16:%d, support i8mm: %d\n", cpuinfo_isa->dot, cpuinfo_isa->fp16arith, cpuinfo_isa->i8mm);
}