MNN/source/backend/cpu/OneDNNConvInt8.cpp

191 lines
8.8 KiB
C++

//
// OneDNNConvInt8.cpp
//
//
#ifdef MNN_USE_ONEDNN
#include "backend/cpu/OneDNNConvInt8.hpp"
#include "core/ConvolutionCommon.hpp"
using namespace dnnl;
using tag = memory::format_tag;
using dt = memory::data_type;
namespace MNN {
OneDNNConvInt8::~OneDNNConvInt8() {
// Do nothing
}
Execution* OneDNNConvInt8::create(Backend* backend, const MNN::Convolution2D* convParam, const std::vector<Tensor*>& inputs, const std::vector<Tensor *> &outputs) {
std::shared_ptr<OneDNNConvInt8::Resource> resource(new OneDNNConvInt8::Resource);
resource->backend = backend;
const auto convCommon = convParam->common();
const auto kw = convCommon->kernelX();
const auto kh = convCommon->kernelY();
const auto ic = convCommon->inputCount();
const auto oc = convCommon->outputCount();
const auto strideX = convCommon->strideX();
const auto strideY = convCommon->strideY();
auto weights = convParam->symmetricQuan()->weight()->data();
auto bias = convParam->symmetricQuan()->bias()->data();
std::vector<float> scale(oc);
for (auto i = 0; i < scale.size(); i++) {
scale[i] = convParam->symmetricQuan()->scale()->data()[i];
}
const int conv_mask = 2;
resource->conv_attr.set_output_scales(conv_mask, scale);
if (convCommon->relu() || convCommon->relu6()) {
post_ops ops;
ops.append_eltwise(1.0f, algorithm::eltwise_relu, 0.0f, 0.0f);
resource->conv_attr.set_post_ops(ops);
}
auto eng = engine(engine::kind::cpu, 0);
resource->eng = eng;
auto stm = stream(eng);
memory::dims conv_weights_tz = {oc, ic, kh, kw};
memory::dims conv_bias_tz = {oc};
memory::dims conv_strides = {strideX, strideY};
memory::dims conv_src_tz = {1, ic, convCommon->strideY() + (kh - 1) * convCommon->dilateY() + 1, (kw - 1) * convCommon->dilateX() + 1 + convCommon->strideX()};
memory::dims conv_dst_tz = {1, oc, 2, 2};
memory::dims conv_padding = {0, 0};
auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
auto conv_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::any);
auto conv_bias_md = memory::desc({conv_bias_tz}, dt::s32, tag::a);
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_bias_md,
conv_dst_md, conv_strides, conv_padding, conv_padding);
auto conv_pd = convolution_forward::primitive_desc(conv_desc, resource->conv_attr, eng);
auto weightSrc = convParam->symmetricQuan()->weight()->data();
resource->mWeight.reset(Tensor::createDevice<int8_t>({(int)conv_pd.weights_desc().get_size()}));
resource->mBias.reset(Tensor::createDevice<int32_t>({(int)convParam->symmetricQuan()->bias()->size()}));
auto res = backend->onAcquireBuffer(resource->mWeight.get(), Backend::STATIC);
res = res && backend->onAcquireBuffer(resource->mBias.get(), Backend::STATIC);
if (!res) {
return nullptr;
}
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
if (convParam->quanParameter() != nullptr) {
quanCommon = ConvolutionCommon::load(convParam, backend(), false);
weightSrc = quanCommon->weight.get();
}
auto user_weights = memory(user_weights_md, eng, (int8_t*)weightSrc);
auto conv_weights = memory(conv_pd.weights_desc(), eng, resource->mWeight->host<int8_t>());
auto r_pd = reorder::primitive_desc(user_weights, conv_weights);
reorder(r_pd).execute(stm, user_weights, conv_weights);
::memcpy(resource->mBias->host<int32_t>(), convParam->symmetricQuan()->bias()->data(), convParam->symmetricQuan()->bias()->size() * sizeof(int32_t));
resource->conv_bias = memory(conv_bias_md, eng, resource->mBias->host<int32_t>());
resource->conv_weights = conv_weights;
return new OneDNNConvInt8(resource, convCommon, backend);
}
OneDNNConvInt8::OneDNNConvInt8(std::shared_ptr<OneDNNConvInt8::Resource> resource, const MNN::Convolution2DCommon* common, Backend* bn) : CPUConvolution(common, bn) {
mResource = resource;
stm = stream(mResource->eng);
}
bool OneDNNConvInt8::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
auto dstExe = new OneDNNConvInt8(mResource, op->main_as_Convolution2D()->common(), bn);
*dst = dstExe;
return true;
}
ErrorCode OneDNNConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto convCommon = mCommon;
const auto kw = convCommon->kernelX();
const auto kh = convCommon->kernelY();
const auto ic = convCommon->inputCount();
const auto oc = convCommon->outputCount();
const auto strideX = convCommon->strideX();
const auto strideY = convCommon->strideY();
const auto ih = inputs[0]->height();
const auto iw = inputs[0]->width();
const auto oh = outputs[0]->height();
const auto ow = outputs[0]->width();
auto pads = ConvolutionCommon::convolutionPadFull(inputs[0], outputs[0], mCommon);
memory::dims conv_src_tz = {inputs[0]->batch(), ic, ih, iw};
memory::dims conv_weights_tz = {oc, ic, kh, kw};
memory::dims conv_bias_tz = {oc};
memory::dims conv_dst_tz = {outputs[0]->batch(), oc, oh, ow};
memory::dims conv_strides = {strideX, strideY};
auto user_src_md = memory::desc({conv_src_tz}, dt::s8, tag::nChw4c);
auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
auto user_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::nChw4c);
auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
user_src = memory(user_src_md, mResource->eng, inputs[0]->host<int8_t>());
user_dst = memory(user_dst_md, mResource->eng, outputs[0]->host<int8_t>());
mSrcTemp = nullptr;
mDstTemp = nullptr;
// Fix weight desc and bias desc
auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_auto, conv_src_md, mResource->conv_weights.get_desc(), mResource->conv_bias.get_desc(),
conv_dst_md, conv_strides, {std::get<1>(pads), std::get<0>(pads)}, {std::get<3>(pads), std::get<2>(pads)});
auto conv_pd = convolution_forward::primitive_desc(conv_desc, mResource->conv_attr, mResource->eng);
conv = convolution_forward(conv_pd);
mSrcTemp = nullptr;
mDstTemp = nullptr;
if (conv_pd.src_desc() != user_src.get_desc()) {
auto needSize = conv_pd.src_desc().get_size();
mSrcTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
auto res = backend()->onAcquireBuffer(mSrcTemp.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
conv_src = memory(conv_pd.src_desc(), mResource->eng, mSrcTemp->host<int8_t>());
}
if (conv_pd.dst_desc() != user_dst.get_desc()) {
auto needSize = conv_pd.dst_desc().get_size();
mDstTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
auto res = backend()->onAcquireBuffer(mDstTemp.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
conv_dst = memory(conv_pd.dst_desc(), mResource->eng, mDstTemp->host<int8_t>());
}
if (nullptr != mSrcTemp) {
backend()->onReleaseBuffer(mSrcTemp.get(), Backend::DYNAMIC);
}
if (nullptr != mDstTemp) {
backend()->onReleaseBuffer(mDstTemp.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
ErrorCode OneDNNConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
memory conv_src_temp = user_src;
if (nullptr != mSrcTemp) {
auto r_pd = reorder::primitive_desc(user_src, conv_src);
reorder(r_pd).execute(stm, user_src, conv_src);
conv_src_temp = conv_src;
}
memory conv_dst_temp = user_dst;
if (nullptr != mDstTemp) {
conv_dst_temp = conv_dst;
}
conv.execute(stm, {{DNNL_ARG_SRC, conv_src_temp},
{DNNL_ARG_WEIGHTS, mResource->conv_weights},
{DNNL_ARG_BIAS, mResource->conv_bias},
{DNNL_ARG_DST, conv_dst_temp}});
if (nullptr != mDstTemp) {
auto r_pd = reorder::primitive_desc(conv_dst, user_dst);
reorder(r_pd).execute(stm, conv_dst, user_dst);
}
return NO_ERROR;
}
} // namespace MNN
#endif