MNN/source/backend/cpu/compute/SparseConvInt8TiledExecutor...

241 lines
11 KiB
C++

//
// SparseConvInt8TiledExecutor.hpp
// MNN
//
// Created by MNN on 2021/6/09.
// Copyright © 2018 - 2021, Alibaba Group Holding Limited
#include "SparseConvInt8TiledExecutor.hpp"
#include "ConvolutionTiledExecutor.hpp"
#include "core/BufferAllocator.hpp"
#include "core/Macro.h"
#include <math.h>
#include "CommonOptFunction.h"
#include "core/Concurrency.h"
#include "core/TensorUtils.hpp"
#include "common/MemoryFormater.h"
#include "MNN/AutoTime.hpp"
#include <math.h>
#ifdef MNN_USE_SSE
extern "C" {
void MNNInt8ToUInt8(void* ptr, int count);
}
#endif
namespace MNN {
bool SparseConvInt8TiledExecutor::reorderWeight(Backend* b, const Convolution2DCommon* common,
const std::shared_ptr<Tensor>& weightOrigin,
std::shared_ptr<Tensor>& weight, const SparseCommon* sparseCommon) {
int eP, lP, hP;
auto core = static_cast<CPUBackend*>(b)->int8Functions();
core->MNNGetSparseQuantMatMulPackMode(&eP, &lP, &hP);
int oc = common->outputCount(), ic = common->inputCount(), kernelCount = common->kernelX() * common->kernelY();
auto sparseBlockOC = sparseCommon->args()->LookupByKey("sparseBlockOC")->i();
size_t weightNNZElement = sparseCommon->args()->LookupByKey("NNZElement")->i();
size_t weightBlockNumber = sparseCommon->args()->LookupByKey("blockNumber")->i();
// MNN_PRINT("1x%d weightNNZElement%zu, weightBlockNumber:%zu\n", sparseBlockOC, weightNNZElement, weightBlockNumber);
weight.reset(Tensor::createDevice<uint8_t>({ static_cast<int>(weightNNZElement + 1)})); // one more element in case of weight are all zeros
mNNZMap.reset(Tensor::createDevice<unsigned int>({oc / sparseBlockOC + oc % sparseBlockOC}));
mDataOffsetMap.reset(Tensor::createDevice<int>({static_cast<int>(weightBlockNumber + 1)}));
mValid = backend()->onAcquireBuffer(weight.get(), Backend::STATIC);
mValid = mValid && backend()->onAcquireBuffer(mNNZMap.get(), Backend::STATIC);
mValid = mValid && backend()->onAcquireBuffer(mDataOffsetMap.get(), Backend::STATIC);
if(!mValid) {
MNN_PRINT("in: %s, out of memory!\n", __FUNCTION__);
return false;
}
// MNN_PRINT("oc:%d, sparseBlockOC:%d,\n", oc, sparseBlockOC);
core->MNNPackForSparseQuantMatMul_B(weight->host<int8_t>(), mNNZMap->host<unsigned int>(),
mDataOffsetMap->host<int>(), sparseBlockOC, weightOrigin->host<int8_t>(), oc, kernelCount, ic, eP);
// MNN_PRINT("\nBCSR int8 weight:");
// formatMatrix(weight->host<int8_t>(), {static_cast<int>(weightNNZElement)});
// MNN_PRINT("\nBCSR int8 weight nnzmap:");
// formatMatrix(mNNZMap->host<unsigned int>(), {oc / sparseBlockOC + oc % sparseBlockOC});
// MNN_PRINT("\nBCSR int8 weight dataOffsetMap:");
// formatMatrix(mDataOffsetMap->host<int>(), {static_cast<int>(weightBlockNumber + 1)});
return true;
}
SparseConvInt8TiledExecutor::SparseConvInt8TiledExecutor(Backend* backend, const Convolution2D* convOp, std::shared_ptr<ResourceInt8> res) : ConvInt8TiledExecutor(backend, convOp->common(), res) {
std::shared_ptr<Tensor> weightOrigin;
weightOrigin.swap(mResource->mWeightInt8);
const SparseCommon* sparseCommon = convOp->sparseParameter();
mValid = reorderWeight(backend, convOp->common(), weightOrigin, mResource->mWeightInt8, sparseCommon);
if(!mValid) {
return;
}
// choose int8 sparse gemm kernel
auto sparseBlockOC = sparseCommon->args()->LookupByKey("sparseBlockOC")->i();
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
mSparseQuantMatMulKernel = sparseBlockOC == 4 ? core->MNNPackedSparseQuantMatMulEpx4 : core->MNNPackedSparseQuantMatMulEpx1;
}
SparseConvInt8TiledExecutor::SparseConvInt8TiledExecutor(Backend* backend, const Convolution2DCommon* common,
const SparseConvInt8TiledExecutor& exe)
: ConvInt8TiledExecutor(backend, common, exe.mResource),
mNNZMap(exe.mNNZMap),
mDataOffsetMap(exe.mDataOffsetMap),
mSparseBlockOC(exe.mSparseBlockOC),
mSparseQuantMatMulKernel(exe.mSparseQuantMatMulKernel) {
}
SparseConvInt8TiledExecutor::~SparseConvInt8TiledExecutor() {
// Do nothing
}
bool SparseConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
auto exe = new SparseConvInt8TiledExecutor(bn, op->main_as_Convolution2D()->common(), *this);
if (!exe->valid()) {
return false;
}
*dst = exe;
return true;
}
void SparseConvInt8TiledExecutor::getPackParameter(int* Unit, int* SrcUnit, int* DestUnit, const CoreInt8Functions* core) {
core->MNNGetSparseQuantMatMulPackMode(DestUnit, Unit, SrcUnit);
}
ErrorCode SparseConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
// Timer kernelTimer;
ConvInt8TiledExecutor::onResize(inputs, outputs);
int eP, lP, hP;
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
getPackParameter(&lP, &hP, &eP, core);
int lSize = mIm2ColParamter.icDiv4 * mIm2ColParamter.packCUnit * mCommon->kernelX() * mCommon->kernelY();
mIm2ColCount = 1;
auto output = outputs[0];
auto planeSize = output->width() * output->height() * output->batch();
auto DynamicDestUnit = eP * mIm2ColCount;
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
mThreadNums = std::min(threads, mTileCount);
mIm2ColParamter.destICStride = mIm2ColParamter.icDiv4 * mIm2ColParamter.packCUnit * eP;
mSparseQuantParam.eP = eP;
mSparseQuantParam.l = lSize;
mSparseQuantParam.h = mCommon->outputCount();
mSparseQuantParam.aStride = eP * mSparseQuantParam.l;
mSparseQuantParam.cStride = outputs[0]->batch() * outputs[0]->height() * outputs[0]->width() * static_cast<CPUBackend*>(backend())->functions()->pack;
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({mThreadNums, eP, UP_DIV(lSize, lP) * lP}));
bool success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
auto bufferAlloc = static_cast<CPUBackend*>(backend())->getBufferAllocator();
auto blitInfoSize = ConvolutionTiledExecutor::computeBlitInfoSize(eP, mIm2ColParamter.ow, mIm2ColParamter.kernelX * mIm2ColParamter.kernelY, mThreadNums);
mBlitInfo = bufferAlloc->alloc(blitInfoSize.first);
if (mBlitInfo.invalid()) {
return OUT_OF_MEMORY;
}
bufferAlloc->free(mBlitInfo);
mBlitInfoStride = blitInfoSize.second;
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
// MNN_PRINT("sparse conv2d int8 resize: cost time: %llu us\n", kernelTimer.durationInUs());
return NO_ERROR;
}
ErrorCode SparseConvInt8TiledExecutor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
// Timer kernelTimer;
const auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
int PackUnit = static_cast<CPUBackend*>(backend())->functions()->pack;
auto blitProc = core->MNNPackC4Int8ForMatMul_ASparse;
const int outputPlaneLen = output->height() * output->width() * output->batch();
const int batch = input->batch();
const int ocDivPack = UP_DIV(output->channel(), PackUnit);
const auto inputDataPtr = input->host<int8_t>();
const auto weightDataPtr = mResource->mWeightInt8->host<int8_t>();
const auto NNZMapPtr = mNNZMap->host<unsigned int>();
const auto dataOffsetPtr = mDataOffsetMap->host<int>();
auto im2colPtr = mTempIm2ColBuffer->host<int8_t>();
auto outputDataPtr = output->host<int8_t>();
QuanPostTreatParameters quanParam;
quanParam.bias = mMutableResource.mBiasInt32->host<int32_t>();
quanParam.scale = mMutableResource.mScaleFloat->host<float>();
quanParam.maxValue = mMutableResource.mClampMax;
if (mResource->mRelu) {
quanParam.minValue = mMutableResource.mOutputZeroPoint;
} else {
quanParam.minValue = mMutableResource.mClampMin;
}
// MNN_PRINT("outputPlaneLen: %d, reduce l:%zu, minValue:%d, maxValue:%d, mTileCount:%d\n", outputPlaneLen, mSparseQuantParam.l, quanParam.minValue, quanParam.maxValue, mTileCount);
const int col_buffer_size = mTempIm2ColBuffer->stride(0);
auto threadFunction = [&](int tId) {
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer->stride(0);
int32_t info[4];
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
info[2] = (int)mSparseQuantParam.eP;
info[3] = mIm2ColParamter.strideX;
auto srcPtr = (int8_t const **)(mBlitInfo.ptr() + tId * mBlitInfoStride.first);
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
for (int tIndex = tId; tIndex < mTileCount; tIndex += mThreadNums) {
SparseQuantMatMulParam sparseQuantParam = mSparseQuantParam;
const int xIndexStart = tIndex * sparseQuantParam.eP;
const int realDstCount = ALIMIN(outputPlaneLen - xIndexStart, sparseQuantParam.eP);
sparseQuantParam.eSize = realDstCount;
// im2col
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, xIndexStart, realDstCount, mIm2ColParamter, (const uint8_t*)inputDataPtr, 1);
int number = res.first;
bool needZero = res.second;
if (needZero) {
#ifdef MNN_USE_SSE
::memset(colAddr, mMutableResource.mInputZeroPoint + 128, col_buffer_size);
#else
::memset(colAddr, mMutableResource.mInputZeroPoint, col_buffer_size);
#endif
}
info[0] = number;
if (number > 0) {
blitProc(colAddr, srcPtr, info, el);
}
// MNN_PRINT("batch:%d, realDstCount:%d, InputZeroPoint:%d, inputdata matrix im2col:\n", bIndex, realDstCount, mResource->mInputZeroPoint);
// formatMatrix(colAddr, {static_cast<int>(UP_DIV(realDstCount, sparseQuantParam.eP)), static_cast<int>(sparseQuantParam.l), static_cast<int>(sparseQuantParam.eP)});
#ifdef MNN_USE_SSE
const int col_buffer_size = sparseQuantParam.aStride * sizeof(int8_t);
MNNInt8ToUInt8(colAddr, col_buffer_size);
#endif
auto outputInTilePtr = outputDataPtr + xIndexStart * PackUnit;
// MNN_PRINT("bIndex:%d, offset:%zu, spmm sparseMatmul tile:\n", bIndex, outputInTilePtr - outputDataPtr);
mSparseQuantMatMulKernel(outputInTilePtr, colAddr, weightDataPtr, (size_t*)&sparseQuantParam, &quanParam, NNZMapPtr, dataOffsetPtr);
// formatMatrix(outputInTilePtr, {static_cast<int>(UP_DIV(sparseQuantParam.h, PackUnit)), realDstCount, PackUnit});
}
};
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
threadFunction((int)tId);
}
MNN_CONCURRENCY_END();
// MNN_PRINT("sparse conv2d int8 execute: cost time: %llu us\n", kernelTimer.durationInUs());
return NO_ERROR;
}
} // namespace MNN