MNN/source/backend/opencl/execution/buffer/BinaryBufExecution.cpp

338 lines
18 KiB
C++

//
// BinaryBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/BinaryBufExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
BinaryBufExecution::BinaryBufExecution(const std::vector<Tensor *> &inputs, const std::string &compute, const MNN::Op *op, Backend *backend)
: CommonExecution(backend, op), mCompute(compute) {
mBuildOptions.emplace("-DOPERATOR=" + compute);
}
uint32_t BinaryBufExecution::realSize(const Tensor* tensor) {
uint32_t num = 1;
for(int i = 0; i < tensor->dimensions(); i++) {
num *= tensor->length(i);
}
return num;
}
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
ErrorCode BinaryBufExecution::SubgroupOnResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto openCLBackend = static_cast<OpenCLBackend *>(backend());
auto output = outputs[0];
auto inputShape0 = tensorShapeFormat(inputs[0]);
auto inputShape1 = tensorShapeFormat(inputs[1]);
auto outputShape = tensorShapeFormat(output);
auto runTime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
int shape[4] = {outputShape[0], outputShape[1], outputShape[2], outputShape[3]};
int fullCount[2] = {1, 1};
int input0_c_pack = TensorUtils::getTensorChannelPack(inputs[0]);
int input1_c_pack = TensorUtils::getTensorChannelPack(inputs[1]);
int output_c_pack = TensorUtils::getTensorChannelPack(output);
int activationType = 0;
if(mOp->type() == OpType_BinaryOp) {
activationType = mOp->main_as_BinaryOp()->activationType();
}
auto &unit = mUnits[0];
std::string kernelName = "binary_buf_c" + std::to_string(input0_c_pack) + "_c" + std::to_string(input1_c_pack) +
"_c" + std::to_string(output_c_pack);
unit.kernel = runTime->buildKernel("binary_subgroup_buf", kernelName, mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
fullCount[0] = realSize(inputs[0]) == 1 ? 0 : 1;
fullCount[1] = realSize(inputs[1]) == 1 ? 0 : 1;
auto input0pad = TensorUtils::getDescribe(inputs[0])->mPads;
auto input1pad = TensorUtils::getDescribe(inputs[1])->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
if (input0_c_pack == 16 && input1_c_pack == 16) {
mGlobalWorkSize = {(uint32_t)UP_DIV(outputShape[2], 4) * outputShape[1],
(uint32_t)ROUND_UP(outputShape[3], 16), (uint32_t)outputShape[0]};
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {1, 16, 1};
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[1]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0pad.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0pad.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1pad.left));
ret |= ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1pad.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpad.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution C16");
} else {
mGlobalWorkSize = {(uint32_t)outputShape[2] * outputShape[1], (uint32_t)UP_DIV(outputShape[3], 4),
(uint32_t)outputShape[0]};
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[1]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0pad.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0pad.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1pad.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1pad.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpad.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution");
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
}
for (int i = 2; i < inputs.size(); ++i) {
fullCount[0] = 1;
fullCount[1] = realSize(inputs[i]) == 1 ? 0 : 1;
auto &unit = mUnits[i-1];
int input0_c_pack_tmp = TensorUtils::getTensorChannelPack(output);
int input1_c_pack_tmp = TensorUtils::getTensorChannelPack(inputs[i]);
int output_c_pack_tmp = TensorUtils::getTensorChannelPack(output);
std::string kernelNameTmp = "binary_buf_c" + std::to_string(input0_c_pack_tmp) + "_c" + std::to_string(input1_c_pack_tmp) +
"_c" + std::to_string(output_c_pack_tmp);
unit.kernel = runTime->buildKernel("binary_subgroup_buf", kernelNameTmp, mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
auto input0padtmp = TensorUtils::getDescribe(output)->mPads;
auto input1padtmp = TensorUtils::getDescribe(inputs[i])->mPads;
auto outputpadtmp = TensorUtils::getDescribe(output)->mPads;
uint32_t index = 0;
if (input0_c_pack_tmp == 16 && input1_c_pack_tmp == 16) {
mGlobalWorkSize = {(uint32_t)UP_DIV(outputShape[2], 4) * outputShape[1],
(uint32_t)ROUND_UP(outputShape[3], 16), (uint32_t)outputShape[0]};
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {1, 16, 1};
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[i]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0padtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0padtmp.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1padtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1padtmp.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpadtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpadtmp.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution C16 MultiInput");
} else {
mGlobalWorkSize = {(uint32_t)outputShape[2] * outputShape[1], (uint32_t)UP_DIV(outputShape[3], 4),
(uint32_t)outputShape[0]};
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[i]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0padtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input0padtmp.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1padtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(input1padtmp.right));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpadtmp.left));
ret |= unit.kernel.setArg(index++, static_cast<uint32_t>(outputpadtmp.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution MultiInput");
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelNameTmp, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
}
}
return NO_ERROR;
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
ErrorCode BinaryBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() >= 2);
mUnits.resize(inputs.size() - 1);
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto output = outputs[0];
auto inputShape0 = tensorShapeFormat(inputs[0]);
auto inputShape1 = tensorShapeFormat(inputs[1]);
auto outputShape = tensorShapeFormat(output);
auto runTime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
if (runTime->isSupportedIntelSubgroup()) {
return SubgroupOnResize(inputs, outputs);
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
int shape[4] = {outputShape[0], outputShape[1], outputShape[2], UP_DIV(outputShape[3], 4)};
int fullCount[2] = {1, 1};
int activationType = 0;
if(mOp->type() == OpType_BinaryOp) {
activationType = mOp->main_as_BinaryOp()->activationType();
}
auto &unit = mUnits[0];
unit.kernel = runTime->buildKernel("binary_buf", "binary_buf", mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
mGlobalWorkSize = {(uint32_t)UP_DIV(outputShape[3], 4) * outputShape[0],
(uint32_t)outputShape[1]*outputShape[2]};
fullCount[0] = realSize(inputs[0]) == 1 ? 0 : 1;
fullCount[1] = realSize(inputs[1]) == 1 ? 0 : 1;
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[1]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution");
std::string name = "binary_buf";
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), name, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
for (int i = 2; i < inputs.size(); ++i) {
fullCount[0] = 1;
fullCount[1] = realSize(inputs[i]) == 1 ? 0 : 1;
auto &unit = mUnits[i-1];
unit.kernel = runTime->buildKernel("binary_buf", "binary_buf", mBuildOptions);
uint32_t index = 0;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, openCLBuffer(inputs[i]));
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
MNN_CHECK_CL_SUCCESS(ret, "setArg BinaryBufExecution MultiInput");
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
return NO_ERROR;
}
class BinaryBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
int channel = inputs[i]->channel();
if (channel >= 16) {
TensorUtils::setTensorChannelPack(inputs[i], 16);
}
}
if (op->type() == OpType_Eltwise) {
switch (op->main_as_Eltwise()->type()) {
case EltwiseType_SUM:
return new BinaryBufExecution(inputs, "in0+in1", op, backend);
case EltwiseType_PROD:
return new BinaryBufExecution(inputs, "in0*in1", op, backend);
case EltwiseType_SUB:
return new BinaryBufExecution(inputs, "in0-in1", op, backend);
case EltwiseType_MAXIMUM:
return new BinaryBufExecution(inputs, "in0>in1?in0:in1", op, backend);
default:
break;
}
return nullptr;
}
if (op->type() == OpType_BinaryOp) {
MNN_ASSERT(inputs.size() > 1);
switch (op->main_as_BinaryOp()->opType()) {
case BinaryOpOperation_MUL:
return new BinaryBufExecution(inputs, "in0*in1", op, backend);
case BinaryOpOperation_ADD:
return new BinaryBufExecution(inputs, "in0+in1", op, backend);
case BinaryOpOperation_SUB:
return new BinaryBufExecution(inputs, "in0-in1", op, backend);
case BinaryOpOperation_REALDIV:
return new BinaryBufExecution(inputs, "sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001))", op, backend);
case BinaryOpOperation_MINIMUM:
return new BinaryBufExecution(inputs, "in0>in1?in1:in0", op, backend);
case BinaryOpOperation_MAXIMUM:
return new BinaryBufExecution(inputs, "in0>in1?in0:in1", op, backend);
case BinaryOpOperation_GREATER:
return new BinaryBufExecution(inputs, "convert_float4(-isgreater(in0,in1))", op, backend);
case BinaryOpOperation_LESS:
return new BinaryBufExecution(inputs, "convert_float4(-isless(in0,in1))", op, backend);
case BinaryOpOperation_LESS_EQUAL:
return new BinaryBufExecution(inputs, "convert_float4(-islessequal(in0,in1))", op, backend);
case BinaryOpOperation_GREATER_EQUAL:
return new BinaryBufExecution(inputs, "convert_float4(-isgreaterequal(in0,in1))", op, backend);
case BinaryOpOperation_EQUAL:
return new BinaryBufExecution(inputs, "convert_float4(-isequal(in0,in1))", op, backend);
case BinaryOpOperation_FLOORDIV:
return new BinaryBufExecution(inputs, "floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))", op, backend);
case BinaryOpOperation_FLOORMOD:
return new BinaryBufExecution(inputs, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
case BinaryOpOperation_POW:
return new BinaryBufExecution(inputs, "pow(in0,in1)", op, backend);
case BinaryOpOperation_SquaredDifference:
return new BinaryBufExecution(inputs, "(in0-in1)*(in0-in1)", op, backend);
case BinaryOpOperation_ATAN2:
return new BinaryBufExecution(inputs, "(in1==(FLOAT4)0?(sign(in0)*(FLOAT4)(PI/2)):(atan(in0/in1)+(in1>(FLOAT4)0?(FLOAT4)0:sign(in0)*(FLOAT4)PI)))", op, backend);
case BinaryOpOperation_NOTEQUAL:
return new BinaryBufExecution(inputs, "convert_float4(-isnotequal(in0,in1))", op, backend);
case BinaryOpOperation_MOD:
return new BinaryBufExecution(inputs, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
default:
break;
}
return nullptr;
}
return nullptr;
}
};
OpenCLCreatorRegister<BinaryBufCreator> __eltwiseBuf_op(OpType_Eltwise, BUFFER);
OpenCLCreatorRegister<BinaryBufCreator> __binaryBuf_op(OpType_BinaryOp, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */