MNN/source/backend/opencl/execution/buffer/LayerNormBufExecution.cpp

217 lines
9.1 KiB
C++

//
// LayerNormBufExecution.cpp
// MNN
//
// Created by MNN on 2023/07/05.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/LayerNormBufExecution.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
LayerNormBufExecution::LayerNormBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
const auto* layer_norm_param = op->main_as_LayerNorm();
axis_size = layer_norm_param->axis()->size();
epsilon_ = layer_norm_param->epsilon();
group_ = layer_norm_param->group();
auto bufferUnitSize = runtime->isSupportedFP16() ? sizeof(half_float::half) : sizeof(float);
if(layer_norm_param->gamma() && layer_norm_param->beta()){
has_gamma_beta_ = true;
{
auto error = CL_SUCCESS;
int size = layer_norm_param->gamma()->size();
mGammaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto GammaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mGammaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
const float* gamma_data = layer_norm_param->gamma()->data();
if(GammaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
for (int i = 0; i < size; i++)
{
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(gamma_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(GammaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(GammaPtrCL, gamma_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error GammaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mGammaBuffer.get(), GammaPtrCL);
}
{
auto error = CL_SUCCESS;
int size = layer_norm_param->beta()->size();
mBetaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto BetaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mBetaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
const float* beta_data = layer_norm_param->beta()->data();
if(BetaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
for (int i = 0; i < size; i++)
{
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(beta_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(BetaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(BetaPtrCL, beta_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error BetaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mBetaBuffer.get(), BetaPtrCL);
}
}
}
int LayerNormBufExecution::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
ErrorCode LayerNormBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
Tensor *input = inputs[0];
Tensor *output = outputs[0];
auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int inputBatch = inputShape[0];
const int inputHeight = inputShape[1];
const int inputWidth = inputShape[2];
const int inputChannels = inputShape[3];
auto MaxWorkItems = runtime->getMaxWorkItemSizes();
int local_size;
int rank = inputs.at(0)->dimensions();
int outter_size = 1;
int inner_size = 1;
for (int i = 0; i < rank - axis_size; ++i) {
outter_size *= inputs.at(0)->length(i);
}
for (int i = rank - axis_size; i < rank; ++i) {
inner_size *= inputs.at(0)->length(i);
}
std::set<std::string> buildOptions;
if(has_gamma_beta_){
buildOptions.emplace("-DGAMMA_BETA");
}
std::string kernelName;
if (inner_size == inputWidth && outter_size == inputBatch * inputHeight * inputChannels) {
kernelName = "layernorm_w_buf";
local_size = getLocalSize(inputWidth, MaxWorkItems[0]);
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
mKernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(inputHeight * UP_DIV(inputChannels, 4)),
static_cast<uint32_t>(inputBatch)};
}else if(inner_size == inputWidth * inputHeight && outter_size == inputBatch * inputChannels){
kernelName = "layernorm_hw_buf";
local_size = getLocalSize(inputWidth * inputHeight, MaxWorkItems[0]);
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
mKernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(UP_DIV(inputChannels, 4)),
static_cast<uint32_t>(inputBatch)};
}else if(inner_size == inputWidth * inputHeight * inputChannels && outter_size == inputBatch){
kernelName = "layernorm_chw_buf";
local_size = getLocalSize(inputWidth * inputHeight, MaxWorkItems[0]);
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
mKernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(1),
static_cast<uint32_t>(inputBatch)};
}
mLWS = {static_cast<uint32_t>(local_size), 1, 1};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGWS[0]);
ret |= mKernel.setArg(idx++, mGWS[1]);
ret |= mKernel.setArg(idx++, mGWS[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputWidth));
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputHeight));
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputChannels));
if(has_gamma_beta_){
ret |= mKernel.setArg(idx++, *mGammaBuffer.get());
ret |= mKernel.setArg(idx++, *mBetaBuffer.get());
}
ret |= mKernel.setArg(idx++, epsilon_);
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution");
return NO_ERROR;
}
ErrorCode LayerNormBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start LayerNormBufExecution onExecute... \n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGWS, mLWS,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"LayerNormBuf", event});
#else
run3DKernelDefault(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end LayerNormBufExecution onExecute... \n");
#endif
return NO_ERROR;
}
class LayerNormBufCreator : public OpenCLBackend::Creator {
public:
virtual ~LayerNormBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
const auto* layer_norm_param = op->main_as_LayerNorm();
int axis_size = layer_norm_param->axis()->size();
int group = layer_norm_param->group();
if(group > 1){
return nullptr;
}
return new LayerNormBufExecution(inputs, op, backend);
}
};
OpenCLCreatorRegister<LayerNormBufCreator> __LayerNormBuf_op_(OpType_LayerNorm, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */