mirror of https://github.com/alibaba/MNN.git
146 lines
6.0 KiB
C++
146 lines
6.0 KiB
C++
//
|
||
// MatmulBufExecution.cpp
|
||
// MNN
|
||
//
|
||
// Created by MNN on 2019/02/28.
|
||
// Copyright © 2018, Alibaba Group Holding Limited
|
||
//
|
||
|
||
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
||
|
||
#include "backend/opencl/execution/buffer/MatmulBufExecution.hpp"
|
||
|
||
namespace MNN {
|
||
namespace OpenCL {
|
||
|
||
MatMulBufExecution::MatMulBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
|
||
bool transposeA, bool transposeB) : Execution(backend)
|
||
, mTransposeA(transposeA), mTransposeB(transposeB){
|
||
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
||
}
|
||
ErrorCode MatMulBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
||
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
||
|
||
Tensor *input0 = inputs[0];
|
||
Tensor *input1 = inputs[1];
|
||
Tensor *output = outputs[0];
|
||
|
||
std::vector<int> input0Shape = tensorShapeFormat(input0);
|
||
std::vector<int> input1Shape = tensorShapeFormat(input1);
|
||
std::vector<int> outputShape = tensorShapeFormat(output);
|
||
|
||
if (mKernel.get() == nullptr) {
|
||
std::set<std::string> buildOptions;
|
||
if(mTransposeA) {
|
||
mKernelName = mTransposeB ? "matmul_transA_transB_buf":"matmul_transA_buf";
|
||
} else {
|
||
mKernelName = mTransposeB ? "matmul_transB_buf":"matmul_buf";
|
||
}
|
||
|
||
if(inputs.size() > 2) {
|
||
buildOptions.emplace("-DBIAS");
|
||
}
|
||
mKernel = runtime->buildKernel("matmul_buf", mKernelName, buildOptions);
|
||
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
||
}
|
||
|
||
//处理二维矩阵相乘,N C相当于H W
|
||
//二维矩阵相乘
|
||
cl_int ret = CL_SUCCESS;
|
||
if(mTransposeA) {
|
||
const int height = input0Shape.at(3);//input0 H
|
||
const int outputChannel = input0Shape.at(0);//input0 W
|
||
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 WW
|
||
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
|
||
const int widthblocks = UP_DIV(width, 4);
|
||
const int heightblocks = UP_DIV(height, 4);
|
||
|
||
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(heightblocks)};
|
||
int idx = 0;
|
||
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
||
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(input0));
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(input1));
|
||
if(inputs.size() > 2) {
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(inputs[2]));
|
||
}
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(output));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(outputChannel));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(height));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(heightblocks));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(widthblocks));
|
||
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution mTransposeA");
|
||
|
||
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
|
||
}
|
||
else {
|
||
const int height = input0Shape.at(0);//input0 H
|
||
const int outputChannel = input0Shape.at(3);//input0 W
|
||
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 W
|
||
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
|
||
const int widthblocks = UP_DIV(width, 4);
|
||
|
||
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(height)};
|
||
int idx = 0;
|
||
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
||
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(input0));
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(input1));
|
||
if(inputs.size() > 2) {
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(inputs[2]));
|
||
}
|
||
ret |= mKernel.setArg(idx++, openCLBuffer(output));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(outputChannel));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
|
||
ret |= mKernel.setArg(idx++, static_cast<int>(widthblocks));
|
||
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution");
|
||
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
|
||
}
|
||
return NO_ERROR;
|
||
}
|
||
|
||
ErrorCode MatMulBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
||
|
||
#ifdef LOG_VERBOSE
|
||
MNN_PRINT("Start MatMulBufExecution onExecute... \n");
|
||
#endif
|
||
|
||
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
||
|
||
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
||
cl::Event event;
|
||
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, &event);
|
||
|
||
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"MatmulBuf", event});
|
||
#else
|
||
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, nullptr);
|
||
#endif
|
||
|
||
#ifdef LOG_VERBOSE
|
||
MNN_PRINT("End MatMulBufExecution onExecute... \n");
|
||
#endif
|
||
return NO_ERROR;
|
||
}
|
||
|
||
class MatMulBufCreator : public OpenCLBackend::Creator {
|
||
public:
|
||
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
||
const MNN::Op *op, Backend *backend) const override {
|
||
for (int i = 0; i < inputs.size(); ++i) {
|
||
TensorUtils::setTensorSupportPack(inputs[i], false);
|
||
}
|
||
for (int i = 0; i < outputs.size(); ++i) {
|
||
TensorUtils::setTensorSupportPack(outputs[i], false);
|
||
}
|
||
auto param = op->main_as_MatMul();
|
||
return new MatMulBufExecution(inputs, op, backend, param->transposeA(), param->transposeB());
|
||
}
|
||
};
|
||
|
||
OpenCLCreatorRegister<MatMulBufCreator> __matmulBuf_op(OpType_MatMul, BUFFER);
|
||
|
||
} // namespace OpenCL
|
||
} // namespace MNN
|
||
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|