MNN/source/backend/opencl/execution/buffer/ReluBufExecution.cpp

235 lines
12 KiB
C++

//
// ReluBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ReluBufExecution.hpp"
#include "core/TensorUtils.hpp"
#include "backend/opencl/execution/buffer/UnaryBufExecution.hpp"
namespace MNN {
namespace OpenCL {
ReluBufExecution::ReluBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: CommonExecution(backend, op) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto mPreluParamPtr = op->main_as_PRelu();
int preluSize = mPreluParamPtr->slopeCount();
const float *preluDataPtr = mPreluParamPtr->slope()->data();
int buffer_size = ALIGN_UP4(preluSize);
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
mPreluParam.reset(Tensor::createDevice<float>({1, 1, 1, ALIGN_UP4(preluSize)}));
mOpenCLBackend->onAcquireBuffer(mPreluParam.get(), Backend::STATIC);
cl::Buffer &preluBuffer = openCLBuffer(mPreluParam.get());
cl_int error;
auto preluDataPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
preluBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(preluDataPtrCL != nullptr && error == CL_SUCCESS){
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
for(int i=0; i<preluSize; i++) {
((half_float::half*)preluDataPtrCL)[i] = (half_float::half)(preluDataPtr[i]);
}
for(int i=preluSize; i<ALIGN_UP4(preluSize); i++) {
((half_float::half*)preluDataPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(preluDataPtrCL, 0, buffer_size);
::memcpy(preluDataPtrCL, preluDataPtr, preluSize * sizeof(float));
}
}else{
MNN_ERROR("Map error preluDataPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(preluBuffer, preluDataPtrCL);
}
ReluBufExecution::~ReluBufExecution() {
mOpenCLBackend->onReleaseBuffer(mPreluParam.get(), Backend::STATIC);
}
ErrorCode ReluBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto nhwc = tensorShapeFormat(outputs[0]);
int nhwcArray[4] = {nhwc[0], nhwc[1], nhwc[2], UP_DIV(nhwc[3], 4)};
auto imageWidth = nhwc[0] * UP_DIV(nhwc[3], 4);
auto imageHeight = nhwc[1] * nhwc[2];
std::vector<uint32_t> localSize = {1, 1};
std::vector<uint32_t> globalSize = {(uint32_t)imageWidth, (uint32_t)imageHeight};
auto runTime = mOpenCLBackend->getOpenCLRuntime();
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
if (runTime->isSupportedIntelSubgroup()){
return SubgrouponResize(inputs, outputs);
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
mUnits[0].kernel = runTime->buildKernel("binary_buf", "prelu_buf", {"-DOPERATOR=select(in0*in1,in0,in0>=(FLOAT4)0)"});
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(mUnits[0].kernel));
int fullCount[2] = {1, 1};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mUnits[0].kernel.setArg(index++, globalSize[0]);
ret |= mUnits[0].kernel.setArg(index++, globalSize[1]);
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(mPreluParam.get()));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(outputs[0]));
ret |= mUnits[0].kernel.setArg(index++, nhwcArray);
MNN_CHECK_CL_SUCCESS(ret, "setArg ReluBufExecution");
std::string name = "prelu_buf";
localSize = localWS2DDefault(globalSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, mUnits[0].kernel).first;
mUnits[0].globalWorkSize = {globalSize[0], globalSize[1]};
mUnits[0].localWorkSize = {localSize[0], localSize[1]};
return NO_ERROR;
}
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
ErrorCode ReluBufExecution::SubgrouponResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto nhwc = tensorShapeFormat(outputs[0]);
int nhwcArray[4] = {nhwc[0], nhwc[1], nhwc[2], nhwc[3]};
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int input_c_pack = TensorUtils::getTensorChannelPack(inputs[0]);
int output_c_pack = TensorUtils::getTensorChannelPack(outputs[0]);
auto inputpad = TensorUtils::getDescribe(inputs[0])->mPads;
auto outputpad = TensorUtils::getDescribe(outputs[0])->mPads;
std::string kernelName = "prelu_buf_c" + std::to_string(input_c_pack) + "_c" + std::to_string(output_c_pack);
std::set<std::string> BuildOptions;
BuildOptions.emplace("-DOPERATOR=select(in0*in1,in0,in0>=(FLOAT4)0)");
mUnits[0].kernel = runTime->buildKernel("binary_subgroup_buf", kernelName, BuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(mUnits[0].kernel));
int fullCount[2] = {1, 1};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
if (input_c_pack == 4) {
std::vector<uint32_t> globalSize = {(uint32_t)nhwc[2] * nhwc[1], (uint32_t)UP_DIV(nhwc[3], 4),
(uint32_t)nhwc[0]};
mUnits[0].globalWorkSize = {globalSize[0], globalSize[1], globalSize[2]};
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[0]);
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[1]);
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[2]);
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(mPreluParam.get()));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(outputs[0]));
ret |= mUnits[0].kernel.setArg(index++, nhwcArray);
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(inputpad.left));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(inputpad.right));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(outputpad.left));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg ReluBufExecution SubGroup C4");
auto lws = localWS3DDefault(globalSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mUnits[0].kernel).first;
mUnits[0].localWorkSize = {lws[0], lws[1], lws[2]};
} else {
mUnits[0].globalWorkSize = {(uint32_t)UP_DIV(nhwc[2], 4) * nhwc[1], (uint32_t)ROUND_UP(nhwc[3], 16),
(uint32_t)nhwc[0]};
mUnits[0].localWorkSize = {1, 16, 1};
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[0]);
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[1]);
ret |= mUnits[0].kernel.setArg(index++, mUnits[0].globalWorkSize[2]);
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(inputs[0]));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(mPreluParam.get()));
ret |= mUnits[0].kernel.setArg(index++, openCLBuffer(outputs[0]));
ret |= mUnits[0].kernel.setArg(index++, nhwcArray);
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(inputpad.left));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(inputpad.right));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(outputpad.left));
ret |= mUnits[0].kernel.setArg(index++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg ReluBufExecution SubGroup");
}
return NO_ERROR;
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
class ReluBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
// There seems to be a bug on OpenCL compiler of AMD Radeon HD 7000 series.
// When use build option -Dname=definition, definition will be truncated by
// a comma, which violate opencl specification (quote, 'In particular, the definition will
// be truncated by embedded newline characters'.)
// So we use ternary operation (A ? B: C) instead of function call with comma
// (e.g, fmax(in,(float4)(0))), when there is a Radeon GPU.
bool isRadeonGpu = (static_cast<OpenCLBackend*>(backend)->getOpenCLRuntime()->getGpuType() == RADEON);
for (int i = 0; i < inputs.size(); ++i) {
int channel = inputs[i]->channel();
if (channel >= 16) {
TensorUtils::setTensorChannelPack(inputs[i], 16);
}
}
if (op->type() == OpType_ReLU6) {
char storage[256];
float minValue = 0.0f;
float maxValue = 6.0f;
if (nullptr != op->main_as_Relu6()) {
minValue = op->main_as_Relu6()->minValue();
maxValue = op->main_as_Relu6()->maxValue();
}
if (isRadeonGpu) {
std::string temp = "(in<=(FLOAT4)((FLOAT)%f)?(FLOAT4)((FLOAT)%f):(in>=(FLOAT4)((FLOAT)%f)?(FLOAT4)((FLOAT)%f):in))";
sprintf(storage, temp.c_str(), minValue, minValue, maxValue, maxValue);
return new UnaryBufExecution(storage, backend);
}
std::string temp = "clamp(in,(FLOAT4)((FLOAT)%f),(FLOAT4)((FLOAT)%f))";
sprintf(storage, temp.c_str(), minValue, maxValue);
return new UnaryBufExecution(storage, backend);
}
if (op->type() == OpType_ReLU) {
if (op->main_as_Relu()->slope() == 0.0f) {
if (isRadeonGpu) {
return new UnaryBufExecution("(in>(FLOAT4)((FLOAT)0)?in:(FLOAT4)((FLOAT)0))", backend);
}
return new UnaryBufExecution("fmax(in,(FLOAT4)((FLOAT)0))", backend);
}
auto slope = op->main_as_Relu()->slope();
char slopeCStr[30] = {};
sprintf(slopeCStr, "%.8f", slope);
std::string slopeStr = slopeCStr;
if (isRadeonGpu) {
return new UnaryBufExecution("in<(FLOAT4)((FLOAT)0)?(FLOAT)(" + slopeStr + "f)*in:in", backend);
}
return new UnaryBufExecution("select((FLOAT)(" + slopeStr + "f)*in,in,in>=(FLOAT4)((FLOAT)0))", backend);
}
if (op->type() == OpType_PReLU) {
if (op->main_as_PRelu()->slopeCount() == 1) {
auto slope = op->main_as_PRelu()->slope()->data()[0];
char slopeCStr[30] = {};
sprintf(slopeCStr, "%.8f", slope);
std::string slopeStr = slopeCStr;
if (isRadeonGpu) {
return new UnaryBufExecution("in<(FLOAT4)((FLOAT)0)?(FLOAT)(" + slopeStr + "f)*in:in", backend);
}
return new UnaryBufExecution("select((FLOAT)(" + slopeStr + "f)*in,in,in>=(FLOAT4)((FLOAT)0))", backend);
}
return new ReluBufExecution(inputs, op, backend);
}
return nullptr;
}
};
OpenCLCreatorRegister<ReluBufCreator> __ReluBuf_op(OpType_ReLU, BUFFER);
OpenCLCreatorRegister<ReluBufCreator> __PReluBuf_op(OpType_PReLU, BUFFER);
OpenCLCreatorRegister<ReluBufCreator> __Relu6Buf_op(OpType_ReLU6, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */