mirror of https://github.com/alibaba/MNN.git
195 lines
7.3 KiB
C++
195 lines
7.3 KiB
C++
//
|
|
// ScaleBufExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
#include "backend/opencl/execution/buffer/ScaleBufExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ScaleBufExecution::ScaleBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: Execution(backend) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleBufExecution init !\n");
|
|
#endif
|
|
auto openclBackend = (OpenCLBackend *)backend;
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
const auto *scaleParams = op->main_as_Scale();
|
|
int scaleSize = scaleParams->scaleData()->size();
|
|
const float *scaleDataPtr = scaleParams->scaleData()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(scaleSize);
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
|
|
mScale.reset(Tensor::createDevice<float>({1, 1, 1, ALIGN_UP4(scaleSize)}));
|
|
backend->onAcquireBuffer(mScale.get(), Backend::STATIC);
|
|
|
|
cl::Buffer &scaleBuffer = openCLBuffer(mScale.get());
|
|
cl_int error;
|
|
auto scalePtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
scaleBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != scalePtrCL && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for (int i = 0; i < scaleSize; i++) {
|
|
((half_float::half *)scalePtrCL)[i] = (half_float::half)(scaleDataPtr[i]);
|
|
}
|
|
for(int i=scaleSize; i<ALIGN_UP4(scaleSize); i++) {
|
|
((half_float::half*)scalePtrCL)[i] = (half_float::half)(0.0f);
|
|
}
|
|
} else {
|
|
::memset(scalePtrCL, 0, buffer_size);
|
|
::memcpy(scalePtrCL, scaleDataPtr, scaleSize * sizeof(float));
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error scalePtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(scaleBuffer, scalePtrCL);
|
|
|
|
std::set<std::string> buildOptions;
|
|
if (nullptr != scaleParams->biasData() && nullptr != scaleParams->biasData()->data()) {
|
|
int biasSize = scaleParams->biasData()->size();
|
|
MNN_ASSERT(biasSize == scaleSize);
|
|
const float *biasDataPtr = scaleParams->biasData()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(biasSize);
|
|
if(openclBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
|
|
mBias.reset(Tensor::createDevice<float>({1, 1, 1, ALIGN_UP4(biasSize)}));
|
|
backend->onAcquireBuffer(mBias.get(), Backend::STATIC);
|
|
cl::Buffer &biasBuffer = openCLBuffer(mBias.get());
|
|
cl_int error;
|
|
auto biasPtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != biasPtrCL && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for (int i = 0; i < biasSize; i++) {
|
|
((half_float::half *)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
|
|
}
|
|
for(int i=biasSize; i<ALIGN_UP4(biasSize); i++) {
|
|
((half_float::half*)biasPtrCL)[i] = (half_float::half)(0.0f);
|
|
}
|
|
} else {
|
|
::memset(biasPtrCL, 0, buffer_size);
|
|
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error biasPtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
|
|
|
|
buildOptions.emplace("-DBIAS");
|
|
mHasBias = true;
|
|
}
|
|
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
mKernel = runtime->buildKernel("scale_buf", "scale_buf", buildOptions);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleBufExecution init !\n");
|
|
#endif
|
|
}
|
|
|
|
ScaleBufExecution::~ScaleBufExecution() {
|
|
if (nullptr != mBias) {
|
|
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
|
|
}
|
|
mOpenCLBackend->onReleaseBuffer(mScale.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode ScaleBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleBufExecution onResize !\n");
|
|
#endif
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
|
|
|
|
const int batch = inputShape.at(0);
|
|
const int height = inputShape.at(1);
|
|
const int width = inputShape.at(2);
|
|
const int channels = inputShape.at(3);
|
|
|
|
const int channelBlocks = UP_DIV(channels, 4);
|
|
|
|
mGlobalWorkSize = {static_cast<uint32_t>(width * channelBlocks),
|
|
static_cast<uint32_t>(height * batch)};
|
|
|
|
int shape[4] = {batch, height, width, channelBlocks};
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(inputs[0]));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mScale.get()));
|
|
if (mHasBias) {
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mBias.get()));
|
|
}
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(outputs[0]));
|
|
ret |= mKernel.setArg(idx++, shape);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg ScaleBufExecution");
|
|
|
|
std::string name = "scale_buf";
|
|
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, mKernel).first;
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode ScaleBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleBufExecution onExecute !\n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Scale", event});
|
|
#else
|
|
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime());
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleBufExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class ScaleBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual ~ScaleBufCreator() = default;
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
return new ScaleBufExecution(inputs, op, backend);
|
|
}
|
|
};
|
|
|
|
OpenCLCreatorRegister<ScaleBufCreator> __scaleBuf_op(OpType_Scale, BUFFER);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|