MNN/source/backend/opencl/execution/buffer/ScaleBufExecution.cpp

195 lines
7.3 KiB
C++

//
// ScaleBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ScaleBufExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
ScaleBufExecution::ScaleBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start ScaleBufExecution init !\n");
#endif
auto openclBackend = (OpenCLBackend *)backend;
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
const auto *scaleParams = op->main_as_Scale();
int scaleSize = scaleParams->scaleData()->size();
const float *scaleDataPtr = scaleParams->scaleData()->data();
int buffer_size = ALIGN_UP4(scaleSize);
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
mScale.reset(Tensor::createDevice<float>({1, 1, 1, ALIGN_UP4(scaleSize)}));
backend->onAcquireBuffer(mScale.get(), Backend::STATIC);
cl::Buffer &scaleBuffer = openCLBuffer(mScale.get());
cl_int error;
auto scalePtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
scaleBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(nullptr != scalePtrCL && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for (int i = 0; i < scaleSize; i++) {
((half_float::half *)scalePtrCL)[i] = (half_float::half)(scaleDataPtr[i]);
}
for(int i=scaleSize; i<ALIGN_UP4(scaleSize); i++) {
((half_float::half*)scalePtrCL)[i] = (half_float::half)(0.0f);
}
} else {
::memset(scalePtrCL, 0, buffer_size);
::memcpy(scalePtrCL, scaleDataPtr, scaleSize * sizeof(float));
}
}else{
MNN_ERROR("Map error scalePtrCL == nullptr \n");
}
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(scaleBuffer, scalePtrCL);
std::set<std::string> buildOptions;
if (nullptr != scaleParams->biasData() && nullptr != scaleParams->biasData()->data()) {
int biasSize = scaleParams->biasData()->size();
MNN_ASSERT(biasSize == scaleSize);
const float *biasDataPtr = scaleParams->biasData()->data();
int buffer_size = ALIGN_UP4(biasSize);
if(openclBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
mBias.reset(Tensor::createDevice<float>({1, 1, 1, ALIGN_UP4(biasSize)}));
backend->onAcquireBuffer(mBias.get(), Backend::STATIC);
cl::Buffer &biasBuffer = openCLBuffer(mBias.get());
cl_int error;
auto biasPtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(nullptr != biasPtrCL && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for (int i = 0; i < biasSize; i++) {
((half_float::half *)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
}
for(int i=biasSize; i<ALIGN_UP4(biasSize); i++) {
((half_float::half*)biasPtrCL)[i] = (half_float::half)(0.0f);
}
} else {
::memset(biasPtrCL, 0, buffer_size);
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
}
}else{
MNN_ERROR("Map error biasPtrCL == nullptr \n");
}
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
buildOptions.emplace("-DBIAS");
mHasBias = true;
}
auto runtime = mOpenCLBackend->getOpenCLRuntime();
mKernel = runtime->buildKernel("scale_buf", "scale_buf", buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
#ifdef LOG_VERBOSE
MNN_PRINT("end ScaleBufExecution init !\n");
#endif
}
ScaleBufExecution::~ScaleBufExecution() {
if (nullptr != mBias) {
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
mOpenCLBackend->onReleaseBuffer(mScale.get(), Backend::STATIC);
}
ErrorCode ScaleBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start ScaleBufExecution onResize !\n");
#endif
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
const int batch = inputShape.at(0);
const int height = inputShape.at(1);
const int width = inputShape.at(2);
const int channels = inputShape.at(3);
const int channelBlocks = UP_DIV(channels, 4);
mGlobalWorkSize = {static_cast<uint32_t>(width * channelBlocks),
static_cast<uint32_t>(height * batch)};
int shape[4] = {batch, height, width, channelBlocks};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, openCLBuffer(inputs[0]));
ret |= mKernel.setArg(idx++, openCLBuffer(mScale.get()));
if (mHasBias) {
ret |= mKernel.setArg(idx++, openCLBuffer(mBias.get()));
}
ret |= mKernel.setArg(idx++, openCLBuffer(outputs[0]));
ret |= mKernel.setArg(idx++, shape);
MNN_CHECK_CL_SUCCESS(ret, "setArg ScaleBufExecution");
std::string name = "scale_buf";
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, mKernel).first;
return NO_ERROR;
}
ErrorCode ScaleBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start ScaleBufExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Scale", event});
#else
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end ScaleBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
class ScaleBufCreator : public OpenCLBackend::Creator {
public:
virtual ~ScaleBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
return new ScaleBufExecution(inputs, op, backend);
}
};
OpenCLCreatorRegister<ScaleBufCreator> __scaleBuf_op(OpType_Scale, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */