MNN/source/backend/opencl/execution/image/DepthwiseDeconvExecution.cpp

212 lines
8.9 KiB
C++

//
// DepthwiseDeconvExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/DepthwiseDeconvExecution.hpp"
#include "backend/opencl/execution/image/MultiInputDWDeconvExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DepthwiseDeconvExecution::DepthwiseDeconvExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op,
Backend *backend)
: ConvCommonExecution(op->main_as_Convolution2D(), backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mCon2dParams = op->main_as_Convolution2D();
mConv2dCommonParams = mCon2dParams->common();
mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
MNN_ASSERT(mStrides[0] > 0 && mStrides[1] > 0);
int kernelWidth = mConv2dCommonParams->kernelX();
int kernelHeight = mConv2dCommonParams->kernelY();
int outputChannel = mConv2dCommonParams->outputCount();
std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
const float* filterDataPtr = nullptr;
int tempWeightSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, backend, mCon2dParams, &filterDataPtr, &tempWeightSize);
mFilter.reset(Tensor::createDevice<float>({1, filterImageShape[1], 1, 4 * filterImageShape[0]}));
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
int buffer_size = filterBuffer->elementSize();
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
cl_int error;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(nullptr != ptrCL && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for(int i=0; i<filterBuffer->elementSize(); i++) {
((half_float::half*)ptrCL)[i] = (half_float::half)(filterDataPtr[i]);
}
}else{
::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
}
}else{
MNN_ERROR("Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
MNN::OpenCL::ImageBufferConvertor imageBufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
std::string buildOption = "";
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf() == false){
buildOption = "-DBUFFER_INP_FP32";
}
imageBufferConvertor.convertBufferToImage(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get(), false, buildOption);
std::set<std::string> buildOptions;
std::string kernelName = "depthwise_deconv2d";
if (mConv2dCommonParams->relu() == true) {
buildOptions.emplace("-DRELU");
} else if (mConv2dCommonParams->relu6() == true) {
buildOptions.emplace("-DRELU6");
}
auto runtime = mOpenCLBackend->getOpenCLRuntime();
mKernel = runtime->buildKernel("depthwise_deconv2d", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
DepthwiseDeconvExecution::~DepthwiseDeconvExecution() {
mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
}
ErrorCode DepthwiseDeconvExecution::onResize(const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) {
startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int strideHeight = mStrides[0];
const int strideWidth = mStrides[1];
const int channelBlocks = UP_DIV(outputChannels, 4);
auto pad = ConvolutionCommon::convolutionTransposePad(input, output, mConv2dCommonParams);
const int paddingHeight = pad.second;
const int paddingWidth = pad.first;
const int alignHeight = strideHeight - 1 - paddingHeight;
const int alignWidth = strideWidth - 1 - paddingWidth;
const int filterHeight = mConv2dCommonParams->kernelY();
const int filterWidth = mConv2dCommonParams->kernelX();
const int kernelSize = filterHeight * filterWidth;
mGWS = {static_cast<uint32_t>(channelBlocks), static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)};
auto kernel = &mKernel;
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
int strideShape[2] = {strideHeight, strideWidth};
int paddingShape[2] = {paddingHeight, paddingWidth};
int alignShape[2] = {alignHeight, alignWidth};
int kernelShape[2] = {filterHeight, filterWidth};
uint32_t idx = 0;
kernel->setArg(idx++, mGWS[0]);
kernel->setArg(idx++, mGWS[1]);
kernel->setArg(idx++, mGWS[2]);
kernel->setArg(idx++, openCLImage(input));
kernel->setArg(idx++, openCLImage(mFilter.get()));
kernel->setArg(idx++, openCLImage(mBias.get()));
kernel->setArg(idx++, openCLImage(output));
kernel->setArg(idx++, sizeof(inputImageShape), inputImageShape);
kernel->setArg(idx++, sizeof(outputImageShape), outputImageShape);
kernel->setArg(idx++, sizeof(strideShape), strideShape);
kernel->setArg(idx++, sizeof(alignShape), alignShape);
kernel->setArg(idx++, sizeof(paddingShape), paddingShape);
kernel->setArg(idx++, sizeof(kernelShape), kernelShape);
kernel->setArg(idx++, static_cast<int32_t>(kernelSize));
kernel->setArg(idx++, static_cast<int32_t>(channelBlocks));
std::string name = "depthwiseDeconv";
mLWS = localWS3DDefault(mGWS, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, mKernel).first;
recordKernel3d(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
return NO_ERROR;
}
ErrorCode DepthwiseDeconvExecution::onExecute(const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start DepthwiseDeconvExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGWS, mLWS,
mOpenCLBackend->getOpenCLRuntime(),
&event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"DepthwiseDeconv", event});
#else
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
#ifdef LOG_VERBOSE
MNN_PRINT("End DepthwiseDeconvExecution onExecute... \n");
#endif
return NO_ERROR;
}
run3DKernelDefault(mKernel, mGWS, mLWS,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("End DepthwiseDeconvExecution onExecute !\n");
#endif
return NO_ERROR;
}
class DepthwiseDeconvolutionCreator : public OpenCLBackend::Creator {
public:
virtual ~DepthwiseDeconvolutionCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
MNN_ASSERT(inputs.size() <= 3);
if (inputs.size() == 2 || inputs.size() == 3) {
return new MultiInputDWDeconvExecution(op, backend);
}
MNN_ASSERT(inputs.size() == 1);
return new DepthwiseDeconvExecution(inputs, op, backend);
}
};
OpenCLCreatorRegister<DepthwiseDeconvolutionCreator> __DepthwiseDeconv_op(OpType_DeconvolutionDepthwise, IMAGE);
} // namespace OpenCL
} // namespace MNN