MNN/source/backend/opencl/execution/image/EltwiseExecution.cpp

229 lines
10 KiB
C++

//
// EltwiseExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/EltwiseExecution.hpp"
#include "core/Macro.h"
#include <string.h>
#include <string>
#include "core/TensorUtils.hpp"
using std::string;
namespace MNN {
namespace OpenCL {
static string swapComputeIn0In1(const string& computeOrigin) {
string compute = computeOrigin;
for (int i = 2; i < compute.length(); ++i) {
if (compute.substr(i - 2, 2) == "in") {
compute[i] = (compute[i] == '0' ? '1' : '0');
}
}
return compute;
}
EltwiseExecution::EltwiseExecution(const std::vector<Tensor *> &inputs, const std::string &compute, const MNN::Op *op, Backend *backend)
: CommonExecution(backend, op), mCompute(compute) {
mBuildOptions.emplace("-DOPERATOR=" + compute);
}
uint32_t EltwiseExecution::realSize(const Tensor* tensor) {
uint32_t num = 1;
for(int i = 0; i < tensor->dimensions(); i++) {
num *= tensor->length(i);
}
return num;
}
ErrorCode EltwiseExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() >= 2);
mUnits.resize(inputs.size() - 1);
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
startRecord(openCLBackend->getOpenCLRuntime(), mRecording);
auto output = outputs[0];
auto inputShape0 = tensorShapeFormat(inputs[0]);
auto inputShape1 = tensorShapeFormat(inputs[1]);
auto outputShape = tensorShapeFormat(output);
auto runTime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
int shape[4] = {outputShape[0], outputShape[1], outputShape[2], UP_DIV(outputShape[3], 4)};
int fullCount[2] = {1, 1};
int activationType = 0;
if(mOp->type() == OpType_BinaryOp) {
activationType = mOp->main_as_BinaryOp()->activationType();
}
auto &unit = mUnits[0];
unit.kernel = runTime->buildKernel("binary", "binary", mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
mGlobalWorkSize = {(uint32_t)UP_DIV(outputShape[3], 4)*outputShape[2],
(uint32_t)outputShape[0] * outputShape[1]};
if(inputs.size() == 2) {
fullCount[0] = realSize(inputs[0]) == 1 ? 0 : 1;
fullCount[1] = realSize(inputs[1]) == 1 ? 0 : 1;
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, openCLImage(inputs[0]));
ret |= unit.kernel.setArg(index++, openCLImage(inputs[1]));
ret |= unit.kernel.setArg(index++, openCLImage(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
MNN_CHECK_CL_SUCCESS(ret, "setArg eltwiseExecution");
std::string name = "binary";
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), name, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize, openCLBackend->getOpenCLRuntime());
endRecord(openCLBackend->getOpenCLRuntime(), mRecording);
return NO_ERROR;
}
if (inputs.size() > 2) {
auto output = outputs[0];
mTempOutput.reset(Tensor::createDevice(output->shape(), output->getType(), output->getDimensionType()));
bool res = openCLBackend->onAcquireBuffer(mTempOutput.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
openCLBackend->onReleaseBuffer(mTempOutput.get(), Backend::DYNAMIC);
}
bool useTempAsOutput = (inputs.size() % 2 != 0);
fullCount[1] = 1;
for (int i = 0; i < inputs.size(); ++i) {
if (i == 1)
continue;
auto &unit = (i >= 2) ? mUnits[i - 1] : mUnits[i];
unit.kernel = runTime->buildKernel("binary", "binary", mBuildOptions);
auto input0 = inputs[0];
fullCount[0] = realSize(input0) == 1 ? 0 : 1;
if (i >= 2) {
input0 = useTempAsOutput ? outputs[0] : mTempOutput.get();
fullCount[0] = 1;
}
auto input1 = (i >= 2) ? inputs[i] : inputs[i + 1];
fullCount[1] = realSize(input1) == 1 ? 0 : 1;
auto output = useTempAsOutput ? mTempOutput.get() : outputs[0];
useTempAsOutput = !useTempAsOutput;
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, openCLImage(input0));
ret |= unit.kernel.setArg(index++, openCLImage(input1));
ret |= unit.kernel.setArg(index++, openCLImage(output));
ret |= unit.kernel.setArg(index++, shape);
ret |= unit.kernel.setArg(index++, fullCount);
ret |= unit.kernel.setArg(index++, activationType);
MNN_CHECK_CL_SUCCESS(ret, "setArg eltwiseExecution multiinput");
if(i == 0) {
std::string name = "binary";
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), name, unit.kernel).first;
}
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize, openCLBackend->getOpenCLRuntime());
}
endRecord(openCLBackend->getOpenCLRuntime(), mRecording);
return NO_ERROR;
}
class EltwiseCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
if (op->type() == OpType_Eltwise) {
switch (op->main_as_Eltwise()->type()) {
case EltwiseType_SUM:
return new EltwiseExecution(inputs, "in0+in1", op, backend);
case EltwiseType_SUB:
return new EltwiseExecution(inputs, "in0-in1", op, backend);
case EltwiseType_PROD:
return new EltwiseExecution(inputs, "in0*in1", op, backend);
case EltwiseType_MAXIMUM:
return new EltwiseExecution(inputs, "in0>in1?in0:in1", op, backend);
default:
break;
}
return nullptr;
}
if (op->type() == OpType_BinaryOp) {
MNN_ASSERT(inputs.size() > 1);
switch (op->main_as_BinaryOp()->opType()) {
case BinaryOpOperation_MUL:
return new EltwiseExecution(inputs, "in0*in1", op, backend);
case BinaryOpOperation_ADD:
return new EltwiseExecution(inputs, "in0+in1", op, backend);
case BinaryOpOperation_SUB:
return new EltwiseExecution(inputs, "in0-in1", op, backend);
case BinaryOpOperation_REALDIV:
return new EltwiseExecution(inputs, "sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001))", op, backend);
case BinaryOpOperation_MINIMUM:
return new EltwiseExecution(inputs, "in0>in1?in1:in0", op, backend);
case BinaryOpOperation_MAXIMUM:
return new EltwiseExecution(inputs, "in0>in1?in0:in1", op, backend);
case BinaryOpOperation_GREATER:
return new EltwiseExecution(inputs, "convert_float4(-isgreater(in0,in1))", op, backend);
case BinaryOpOperation_LESS:
return new EltwiseExecution(inputs, "convert_float4(-isless(in0,in1))", op, backend);
case BinaryOpOperation_LESS_EQUAL:
return new EltwiseExecution(inputs, "convert_float4(-islessequal(in0,in1))", op, backend);
case BinaryOpOperation_GREATER_EQUAL:
return new EltwiseExecution(inputs, "convert_float4(-isgreaterequal(in0,in1))", op, backend);
case BinaryOpOperation_EQUAL:
return new EltwiseExecution(inputs, "convert_float4(-isequal(in0,in1))", op, backend);
case BinaryOpOperation_FLOORDIV:
return new EltwiseExecution(inputs, "floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))", op, backend);
case BinaryOpOperation_FLOORMOD:
return new EltwiseExecution(inputs, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
case BinaryOpOperation_POW:
return new EltwiseExecution(inputs, "pow(in0,in1)", op, backend);
case BinaryOpOperation_SquaredDifference:
return new EltwiseExecution(inputs, "(in0-in1)*(in0-in1)", op, backend);
case BinaryOpOperation_ATAN2:
return new EltwiseExecution(inputs, "(in1==(FLOAT4)0?(sign(in0)*(FLOAT4)(PI/2)):(atan(in0/in1)+(in1>(FLOAT4)0?(FLOAT4)0:sign(in0)*(FLOAT4)PI)))", op, backend);
case BinaryOpOperation_NOTEQUAL:
return new EltwiseExecution(inputs, "convert_float4(-isnotequal(in0,in1))", op, backend);
case BinaryOpOperation_MOD:
return new EltwiseExecution(inputs, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
default:
break;
}
return nullptr;
}
return nullptr;
}
};
OpenCLCreatorRegister<EltwiseCreator> __eltwise_op(OpType_Eltwise, IMAGE);
OpenCLCreatorRegister<EltwiseCreator> __binary_op(OpType_BinaryOp, IMAGE);
} // namespace OpenCL
} // namespace MNN