mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeConvolution3D.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
namespace MNN {
 | 
						|
class Convolution3DSizeComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        
 | 
						|
        auto layer        = op->main_as_Convolution3D()->common();
 | 
						|
        auto input = inputs[0];
 | 
						|
        if (input->buffer().dimensions != 5) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        
 | 
						|
        auto& outputBuffer         = outputs[0]->buffer();
 | 
						|
        outputBuffer.dimensions    = input->buffer().dimensions;
 | 
						|
        outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | 
						|
        outputBuffer.dim[1].extent = layer->outputCount();
 | 
						|
        
 | 
						|
        for (int i = 0; i < 3; ++i) {
 | 
						|
            const int inputLength = input->length(i + 2), stride = (*layer->strides())[i];
 | 
						|
            if (inputLength <= 0) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            int outputLength;
 | 
						|
            if (layer->padMode() == PadMode_SAME) {
 | 
						|
                outputLength = UP_DIV(inputLength, stride);
 | 
						|
            } else {
 | 
						|
                const int pad = (*layer->pads())[i], kernel = (*layer->kernels())[i], dialate = (*layer->dilates())[i];
 | 
						|
                const int dialatedKernel = (kernel - 1) * dialate + 1;
 | 
						|
                outputLength = (inputLength + 2 * pad - dialatedKernel) / stride + 1;
 | 
						|
            }
 | 
						|
            outputBuffer.dim[i + 2].extent = outputLength;
 | 
						|
        }
 | 
						|
        
 | 
						|
        outputBuffer.type = input->getType();
 | 
						|
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                 const std::vector<Tensor*>& outputs) const override {
 | 
						|
        auto layer = op->main_as_Convolution3D()->common();
 | 
						|
        int oSize = outputs[0]->length(1);
 | 
						|
        float flopsPerElement = inputs[0]->length(1);
 | 
						|
        for (int i = 0; i < 3; ++i) {
 | 
						|
            flopsPerElement *= (*layer->kernels())[i];
 | 
						|
            oSize *= outputs[0]->length(i + 2);
 | 
						|
        }
 | 
						|
        float flops = oSize * flopsPerElement / FLOPS_M;
 | 
						|
 | 
						|
        return flops;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(Convolution3DSizeComputer, OpType_Convolution3D);
 | 
						|
} // namespace MNN
 |