mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeUnpack.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
class UnpackComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | 
						|
                               const std::vector<Tensor *> &outputs) const override {
 | 
						|
        if (nullptr == op || inputs.empty() || outputs.empty()) {
 | 
						|
            // Avoid crash for special model
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        auto unpack    = op->main_as_Axis();
 | 
						|
        int axis = unpack->axis();
 | 
						|
        if (axis < 0) {
 | 
						|
            axis += inputs[0]->dimensions();
 | 
						|
        }
 | 
						|
 | 
						|
        auto &input = inputs[0]->buffer();
 | 
						|
 | 
						|
        const int inputDimensions = input.dimensions;
 | 
						|
        MNN_ASSERT(1 <= inputDimensions);
 | 
						|
        int32_t outDims[MNN_MAX_TENSOR_DIM];
 | 
						|
        if (outputs.size() > input.dim[axis].extent) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        for (int i = 0; i < axis; i++) {
 | 
						|
            outDims[i] = input.dim[i].extent;
 | 
						|
        }
 | 
						|
        for (int i = axis + 1; i < inputDimensions; i++) {
 | 
						|
            outDims[i - 1] = input.dim[i].extent;
 | 
						|
        }
 | 
						|
        const int outputDimensions = inputDimensions - 1;
 | 
						|
        for (int i = 0; i < outputs.size(); i++) {
 | 
						|
            auto &output      = outputs[i]->buffer();
 | 
						|
            output.dimensions = outputDimensions;
 | 
						|
            output.type       = input.type;
 | 
						|
            for (int j = 0; j < outputDimensions; j++) {
 | 
						|
                output.dim[j].extent = outDims[j];
 | 
						|
            }
 | 
						|
            TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(UnpackComputer, OpType_Unpack);
 | 
						|
} // namespace MNN
 |