MNN/source/backend/metal/MetalSlice.mm

166 lines
7.1 KiB
Plaintext
Executable File

//
// MetalSlice.mm
// MNN
//
// Created by MNN on 2019/01/30.
// Copyright © 2018, Alibaba Group Holding Limited
//
#import "backend/metal/MetalSlice.hpp"
#import "backend/metal/MNNMetalContext.h"
#import "core/Macro.h"
#import "core/Macro.h"
#import "backend/metal/MetalBackend.hpp"
#if MNN_METAL_ENABLED
namespace MNN {
MetalSlice::MetalSlice(Backend *backend, int axis) : Execution(backend), mAxis(axis) {
// nothing to do
}
ErrorCode MetalSlice::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto backend = static_cast<MetalBackend *>(this->backend());
auto context = (__bridge MNNMetalContext *)backend->context();
auto input = (__bridge id<MTLBuffer>)(void *)inputs[0]->deviceId();
auto tf = inputs[0]->getDimensionType() == Tensor::TENSORFLOW;
auto encoder = [context encoder];
auto start = 0;
// tensorflow
if (tf) {
auto iw = inputs[0]->width(), ih = inputs[0]->height(), ic = inputs[0]->channel();
for (int i = 0; i < outputs.size(); i++) {
auto output = (__bridge id<MTLBuffer>)(void *)outputs[i]->deviceId();
if (mAxis == 1) { // h
NSUInteger size = outputs[i]->elementSize();
auto bandwidth = [context load:@"copy_float" encoder:encoder];
[encoder setBuffer:input offset:start * sizeof(metal_float) atIndex:0];
[encoder setBuffer:output offset:0 atIndex:1];
[context dispatchEncoder:encoder threads:{ size, 1, 1 } bandwidth:bandwidth];
start += size;
continue;
}
auto ow = outputs[i]->width(), oc = outputs[i]->channel();
auto shape = [context newDeviceBuffer:6 * sizeof(int) access:CPUWriteOnly];
((int *)shape.contents)[0] = ow;
((int *)shape.contents)[1] = ih;
((int *)shape.contents)[2] = ow * oc; // output steps
((int *)shape.contents)[3] = oc;
((int *)shape.contents)[4] = iw * ic; // input steps
((int *)shape.contents)[5] = ic;
auto bandwidth = [context load:@"slice_tf" encoder:encoder];
[encoder setBuffer:input offset:start * sizeof(metal_float) atIndex:0];
[encoder setBuffer:output offset:0 atIndex:1];
[encoder setBuffer:shape offset:0 atIndex:2];
[context dispatchEncoder:encoder
threads:{ (NSUInteger) ow, (NSUInteger)ih, (NSUInteger)oc }
bandwidth:bandwidth];
if (mAxis == 2) { // w
start += ow * oc;
} else if (mAxis == 3) { // c
start += oc;
} else {
MNN_ASSERT(false);
}
}
}
// caffe
else {
auto iw = inputs[0]->width(), ih = inputs[0]->height(), iz = UP_DIV(inputs[0]->channel(), 4);
switch (mAxis) {
case 1: { // c
auto shape = [context newDeviceBuffer:6 * sizeof(int) access:CPUWriteOnly];
((int *)shape.contents)[0] = iw;
((int *)shape.contents)[1] = ih;
((int *)shape.contents)[2] = iw * ih; // output steps
((int *)shape.contents)[3] = iw;
((int *)shape.contents)[4] = iw * ih; // input steps
((int *)shape.contents)[5] = iw;
auto bandwidth = [context load:@"slice_channel" encoder:encoder];
for (int i = 0; i < outputs.size(); i++) {
auto output = (__bridge id<MTLBuffer>)(void *)outputs[i]->deviceId();
auto oc = outputs[i]->channel(), oz = UP_DIV(oc, 4);
int range[2] = {start, start + oc - 1};
[encoder setBuffer:input offset:0 atIndex:0];
[encoder setBuffer:output offset:0 atIndex:1];
[encoder setBuffer:shape offset:0 atIndex:2];
[encoder setBuffer:[context newDeviceBuffer:sizeof(range) bytes:range access:CPUWriteOnly]
offset:0
atIndex:3];
[context dispatchEncoder:encoder
threads:{ (NSUInteger) iw, (NSUInteger)ih, (NSUInteger)oz }
bandwidth:bandwidth];
start += oc;
}
} break;
case 2: { // h
auto bandwidth = [context load:@"copy_float" encoder:encoder];
auto is = iw * ih * 4 * sizeof(metal_float);
for (int i = 0; i < outputs.size(); i++) {
auto output = (__bridge id<MTLBuffer>)(void *)outputs[i]->deviceId();
auto oh = outputs[i]->height(), num = iw * oh * 4, os = num * (int)sizeof(metal_float);
for (int j = 0; j < iz; j++) {
[encoder setBuffer:input offset:start + j * is atIndex:0];
[encoder setBuffer:output offset:j * os atIndex:1];
[context dispatchEncoder:encoder threads:{ (NSUInteger) num, 1, 1 } bandwidth:bandwidth];
}
start += os;
}
} break;
case 3: { // w
auto bandwidth = [context load:@"slice_width" encoder:encoder];
for (int i = 0; i < outputs.size(); i++) {
auto output = (__bridge id<MTLBuffer>)(void *)outputs[i]->deviceId();
auto ow = outputs[i]->width();
auto shape = [context newDeviceBuffer:6 * sizeof(int) access:CPUWriteOnly];
((int *)shape.contents)[0] = ow;
((int *)shape.contents)[1] = ih;
((int *)shape.contents)[2] = ow * ih; // output steps
((int *)shape.contents)[3] = ow;
((int *)shape.contents)[4] = iw * ih; // input steps
((int *)shape.contents)[5] = iw;
[encoder setBuffer:input offset:start * 4 * sizeof(metal_float) atIndex:0];
[encoder setBuffer:output offset:0 atIndex:1];
[encoder setBuffer:shape offset:0 atIndex:2];
[context dispatchEncoder:encoder
threads:{ (NSUInteger) ow, (NSUInteger)ih, (NSUInteger)iz }
bandwidth:bandwidth];
start += ow;
}
} break;
default:
MNN_ASSERT(false);
break;
}
}
[encoder endEncoding];
MNN_PRINT_ENCODER(context, encoder);
return NO_ERROR;
}
class MetalSliceCreator : public MetalBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend) const {
auto axis = op->main_as_Slice()->axis();
if (0 > axis) {
axis = inputs[0]->dimensions() + axis;
}
return new MetalSlice(backend, axis);
}
};
REGISTER_METAL_OP_CREATOR(MetalSliceCreator, OpType_Slice);
} // namespace MNN
#endif /* MNN_METAL_ENABLED */