MNN/source/backend/vulkan/execution/VulkanDeconvolution.cpp

199 lines
9.7 KiB
C++

//
// VulkanDeconvolution.cpp
// MNN
//
// Created by MNN on 2019/01/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "VulkanDeconvolution.hpp"
#include "core/Macro.h"
namespace MNN {
static void writeReorderBuffer(VulkanMatMul::Reorder::nchwBuffer& buffer, int co, int ci, int kh, int kw) {
buffer.size[0] = co;
buffer.size[1] = ci;
buffer.size[2] = kh;
buffer.size[3] = kw;
buffer.stride[0] = kh * kw;
buffer.stride[1] = kh * kw * co;
buffer.stride[2] = kw;
buffer.stride[3] = 1;
}
VulkanDeconvolution::VulkanDeconvolution(Backend* bn, const std::vector<Tensor*>& inputs, const Convolution2D* conv) : VulkanBasicExecution(bn) {
mConvCommonOption = conv->common();
auto vkBn = (VulkanBackend*)bn;
mConvParam = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false,
sizeof(VulkanConvolutionCommon::ConvolutionParameter), nullptr,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
int kh = mConvCommonOption->kernelY();
int kw = mConvCommonOption->kernelX();
int co = mConvCommonOption->outputCount();
int ci = inputs[0]->channel();
if (nullptr != conv->weight()) {
MNN_ASSERT(inputs.size() == 1);
std::shared_ptr<VulkanBuffer> origin(new VulkanBuffer(vkBn->getMemoryPool(), false, ci * kh * kw * co * sizeof(float), conv->weight()->data(), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT));
std::shared_ptr<VulkanBuffer> midBuffer(new VulkanBuffer(vkBn->getMemoryPool(), false, co * kh * kw * ALIGN_UP4(ci) * sizeof(float), nullptr, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT));
auto kernel = VulkanMatrixMultier4x4::createKernel(vkBn, nullptr, ci, ALIGN_UP4(co) * kh * kw, 1);
VulkanMatMul::Reorder::nchwBuffer parameters;
writeReorderBuffer(parameters, co, ci, kh, kw);
VulkanMatMul::Reorder reorder(vkBn, true, false);
std::shared_ptr<VulkanCommandPool::Buffer> cmdBuffer(vkBn->getPool().allocBuffer());
cmdBuffer->begin(0);
reorder.encode(origin->buffer(), origin->size(), midBuffer->buffer(), midBuffer->size(), kernel.get(), cmdBuffer.get(), parameters);
cmdBuffer->end();
vkBn->getPool().submitAndWait(cmdBuffer->get());
mMultiler.reset(new VulkanMatrixMultier4x4(vkBn, nullptr, ALIGN_UP4(ci), ALIGN_UP4(co) * kh * kw, 1, kernel));
}
if (inputs.size() < 3) {
int outputC4 = UP_DIV(mConvCommonOption->outputCount(), 4);
mBias = std::make_shared<VulkanImage>(vkBn->getMemoryPool(), false, std::vector<int>{outputC4, 1});
auto biasBuffer = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false, outputC4 * 4 * sizeof(float));
auto biasPtr = biasBuffer->map();
::memset(biasPtr, 0, outputC4 * 4 * sizeof(float));
if (nullptr != conv->bias()) {
::memcpy(biasPtr, conv->bias()->data(), conv->bias()->size() * sizeof(float));
}
biasBuffer->unmap();
vkBn->copyBufferToImage(biasBuffer.get(), mBias.get());
}
{
std::vector<VkDescriptorType> im2ColTypes{
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
};
auto macro = VulkanConvolutionCommon::getPostTreatMacro(mConvCommonOption);
mIm2Col = vkBn->getPipeline("glsl_deconvIm2Col_" + macro + "comp", im2ColTypes);
mIm2ColSet.reset(mIm2Col->createSet());
}
{
std::vector<VkDescriptorType> col2ImTypes{
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
};
mCol2Im = vkBn->getPipeline("glsl_deconvCol2Im_comp", col2ImTypes);
mCol2ImSet.reset(mCol2Im->createSet());
}
mSampler = vkBn->getCommonSampler();
}
void VulkanDeconvolution::writeConvolutionConst(VulkanConvolutionCommon::ConvolutionParameter* convCons,
const Convolution2DCommon* common, const Tensor* src,
const Tensor* dst) {
const int icDiv4 = UP_DIV(src->channel(), 4);
const int ocDiv4 = UP_DIV(dst->channel(), 4);
auto pad = ConvolutionCommon::convolutionTransposePad(src, dst, common);
int padX = pad.first;
int padY = pad.second;
convCons->batch = src->batch();
convCons->dilate[0] = common->dilateX();
convCons->dilate[1] = common->dilateY();
convCons->stride[0] = common->strideX();
convCons->stride[1] = common->strideY();
convCons->pad[0] = padX;
convCons->pad[1] = padY;
convCons->kernelSize[0] = common->kernelX();
convCons->kernelSize[1] = common->kernelY();
convCons->inputSize[0] = src->width();
convCons->inputSize[1] = src->height();
convCons->inputSize[2] = icDiv4;
convCons->inputSize[3] = src->batch();
convCons->outputSize[0] = dst->width();
convCons->outputSize[1] = dst->height();
convCons->outputSize[2] = ocDiv4;
convCons->outputSize[3] = dst->batch();
convCons->group = convCons->group;
}
ErrorCode VulkanDeconvolution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const VulkanCommandPool::Buffer* cmdBuffer) {
auto src = inputs[0];
auto dst = outputs[0];
const int icDiv4 = UP_DIV(src->channel(), 4);
const int ocDiv4 = UP_DIV(dst->channel(), 4);
auto vkBn = (VulkanBackend*)backend();
if (inputs.size() > 1) {
int kh = mConvCommonOption->kernelY();
int kw = mConvCommonOption->kernelX();
int co = mConvCommonOption->outputCount();
int ci = inputs[0]->channel();
std::shared_ptr<VulkanBuffer> midBuffer(new VulkanBuffer(vkBn->getDynamicMemoryPool(), false, co * kh * kw * ALIGN_UP4(ci) * sizeof(float), nullptr, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT));
mKernel.reset(new VulkanImage(vkBn->getDynamicMemoryPool(), false,
std::vector<int>{ALIGN_UP4(ci), UP_DIV(co, 4) * kh * kw}));
mReorder.reset(new VulkanMatMul::Reorder(vkBn, true, false));
VulkanMatMul::Reorder::nchwBuffer parameters;
writeReorderBuffer(parameters, co, ci, kh, kw);
mReorder->encode((VkBuffer)inputs[1]->deviceId(), inputs[1]->size(), midBuffer->buffer(), midBuffer->size(), mKernel.get(), cmdBuffer, parameters);
midBuffer->release();
mMultiler.reset(new VulkanMatrixMultier4x4(vkBn, nullptr, ALIGN_UP4(ci), ALIGN_UP4(co) * kh * kw, 1, mKernel));
if (inputs.size() > 2) {
mBias.reset(new VulkanImage(vkBn->getDynamicMemoryPool(), false, std::vector<int>{UP_DIV(co, 4), 1}));
mBiasCopy.reset(new VulkanConvolutionCommon::BufferToImageCopy(vkBn));
mBiasCopy->encode(mBias.get(), (VkBuffer)(inputs[2]->deviceId()), inputs[2]->size(), cmdBuffer);
cmdBuffer->barrierImage(mBias->get(), VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
}
{
auto convCons = reinterpret_cast<VulkanConvolutionCommon::ConvolutionParameter*>(mConvParam->map());
writeConvolutionConst(convCons, mConvCommonOption, src, dst);
convCons->outputSize[3] = src->batch();
convCons->batch = 0;
mConvParam->unmap();
}
mMultiler->prepare(src->width() * src->height() * src->batch());
if (true) {
auto totalInputSize = src->width() * src->height() * icDiv4 * src->batch();
auto dstImage = mMultiler->source();
mCol2ImSet->writeImage((reinterpret_cast<VkImageView>(src->deviceId())), mSampler->get(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 0);
mCol2ImSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_GENERAL, 1);
mCol2ImSet->writeBuffer(mConvParam->buffer(), 2, mConvParam->size());
mCol2Im->bind(cmdBuffer->get(), mCol2ImSet->get());
vkCmdDispatch(cmdBuffer->get(), UP_DIV(totalInputSize, VulkanConvolutionCommon::gImage2ColLocal), 1, 1);
}
mMultiler->compute(cmdBuffer);
if (inputs.size() > 1) {
mKernel->release();
}
if (true) {
auto dstImage = mMultiler->dest();
auto totalSize = dst->width() * dst->height() * ocDiv4 * src->batch();
mIm2ColSet->writeImage((reinterpret_cast<VkImageView>(dst->deviceId())), mSampler->get(),
VK_IMAGE_LAYOUT_GENERAL, 0);
mIm2ColSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
mIm2ColSet->writeImage(mBias->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 2);
mIm2ColSet->writeBuffer(mConvParam->buffer(), 3, mConvParam->size());
mIm2Col->bind(cmdBuffer->get(), mIm2ColSet->get());
cmdBuffer->barrierImage(dstImage->get(), VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
vkCmdDispatch(cmdBuffer->get(), UP_DIV(totalSize, VulkanConvolutionCommon::gImage2ColLocal), 1, 1);
}
if (inputs.size() > 2) {
mBias->release();
}
return NO_ERROR;
}
class VulkanDeconvolutionCreator : public VulkanBackend::Creator {
public:
virtual VulkanBasicExecution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op,
Backend* backend) const override {
return new VulkanDeconvolution(backend, inputs, op->main_as_Convolution2D());
}
};
static bool gResistor = []() {
VulkanBackend::addCreator(OpType_Deconvolution, new VulkanDeconvolutionCreator);
return true;
}();
} // namespace MNN