MNN/source/core/Schedule.cpp

432 lines
16 KiB
C++

//
// Schedule.cpp
// MNN
//
// Created by MNN on 2018/07/30.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "core/Schedule.hpp"
#include <algorithm>
#include <iterator>
#include <set>
#include <unordered_map>
#include "core/DirectedAcyclicGraph.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "core/SizeComputer.hpp"
//#define MNN_OPEN_TIME_TRACE
#include <MNN/AutoTime.hpp>
//#define MNN_AUTO_CHECK_COST
namespace MNN {
class OpNodeDef : public NodeDef<Op*> {
public:
OpNodeDef(Op* op) {
this->op = op;
}
public:
virtual shared_ptr<Node<Op*>> makeNode() override {
shared_ptr<Node<Op*>> ptr = make_shared<Node<Op*>>();
ptr->setData(this->op);
return ptr;
}
private:
Op* op;
};
static MNNForwardType _getApprociateType(const ScheduleConfig& config, const Net* net, const std::vector<std::shared_ptr<Tensor>>& allTensors, bool inputShapeValid) {
MNNForwardType type = config.type;
if (MNN_FORWARD_AUTO == config.type) {
#ifdef MNN_AUTO_CHECK_COST
if (inputShapeValid) {
std::vector<std::pair<std::shared_ptr<Backend>, float>> backends;
// Search Backend Exclude MNN_FORWARD_CPU
for (int i = 0; i < MNN_FORWARD_ALL; ++i) {
auto creator = MNNGetExtraBackendCreator((MNNForwardType)i);
if (creator != nullptr) {
Backend::Info info;
info.type = (MNNForwardType)i;
info.numThread = config.numThread;
info.user = config.backendConfig;
auto backend = std::shared_ptr<Backend>(creator->onCreate(info));
if (nullptr != backend) {
backends.emplace_back(std::make_pair(backend, 0.0f));
}
}
}
auto opSize = net->oplists()->size();
for (int i=0; i<opSize; ++i) {
auto op = net->oplists()->GetAs<Op>(i);
std::vector<Tensor*> inputTensors;
std::vector<Tensor*> outputTensors;
if (op->type() == OpType_Input) {
continue;
}
if (nullptr != op->inputIndexes()) {
for (int index=0; index<op->inputIndexes()->size(); ++index) {
inputTensors.emplace_back(allTensors[op->inputIndexes()->data()[index]].get());
}
}
if (nullptr != op->outputIndexes()) {
for (int index=0; index<op->outputIndexes()->size(); ++index) {
outputTensors.emplace_back(allTensors[op->outputIndexes()->data()[index]].get());
}
}
bool success = SizeComputer::computeOutputSize(op, inputTensors, outputTensors);
if (!success) {
MNN_ERROR("Can't compute shape, use default cpu\n");
return MNN_FORWARD_CPU;
}
float defaultTime = 0.0f;
for (auto& bn : backends) {
auto cost = bn.first->onMeasure(inputTensors, outputTensors, op);
if (cost.second) {
defaultTime = cost.first;
bn.second += cost.first;
} else {
bn.second += defaultTime;
}
}
}
float minCost = -1.0f;
type = MNN_FORWARD_AUTO;
for (auto& bn : backends) {
MNN_PRINT("MNN Auto Select: %d cost about %f ms\n", bn.first->type(), bn.second);
if (minCost < 0 || bn.second < minCost) {
minCost = bn.second;
type = bn.first->type();
}
}
}
else {
#endif
// Search Backend Exclude MNN_FORWARD_CPU
for (int i = 1; i < MNN_FORWARD_ALL; ++i) {
if (MNNGetExtraBackendCreator((MNNForwardType)i) != nullptr) {
type = (MNNForwardType)i;
break;
}
}
#ifdef MNN_AUTO_CHECK_COST
}
#endif
}
auto creator = MNNGetExtraBackendCreator(type);
if (nullptr == creator) {
MNN_PRINT("Can't Find type=%d backend, use %d instead\n", type, config.backupType);
type = config.backupType;
}
return type;
}
static bool _setUpTensorInfo(std::vector<std::shared_ptr<Tensor>>& allTensors, const Net* net) {
bool valid = true;
auto& tensors = allTensors;
tensors.resize(net->tensorName()->size());
for (int i = 0; i < tensors.size(); ++i) {
tensors[i].reset(new Tensor(4)); // NCHW, TODO
tensors[i]->setType(DataType_DT_FLOAT);
}
// Set Input Tensor, if the type of input is not the same with ExtraTensorDescribe, use input parameter
for (int opIndex = 0; opIndex < net->oplists()->size(); ++opIndex) {
auto op = net->oplists()->GetAs<Op>(opIndex);
if (OpType_Input == op->type()) {
MNN_ASSERT(nullptr != op->outputIndexes());
auto index = op->outputIndexes()->data()[0];
auto tensor = tensors[index].get();
auto& tb = tensor->buffer();
auto inputParam = op->main_as_Input();
if (auto idims = inputParam->dims()) {
for (int i = 0; i < idims->size(); ++i) {
tb.dim[i].min = 0;
int extent = idims->data()[i];
// dim-0 is batch(when input batch is -1, set it to be 1, ignore other dim)
if (i == 0 && extent == -1) {
extent = 1;
}
if (extent < 0) {
valid = false;
}
tb.dim[i].extent = extent;
}
tb.dimensions = idims->size();
} else {
tb.dimensions = 0;
}
tensor->setType(inputParam->dtype());
TensorUtils::getDescribe(tensor)->dimensionFormat = inputParam->dformat();
}
}
return valid;
}
static int _findOpPosition(const std::string& opName, const Net* net) {
for (int i = 0; i < net->oplists()->size(); ++i) {
auto op = net->oplists()->GetAs<Op>(i);
if (opName == op->name()->str()) {
return i;
}
}
return -1;
}
static bool _validateOp(const Op* op) {
if (nullptr == op->inputIndexes() && nullptr == op->outputIndexes()) {
return false;
}
if (nullptr == op->name()) {
return false;
}
return true;
}
static vector<Op*> generateOneSchedulePath(const Net* net, const int begin, const int end,
const vector<shared_ptr<Tensor>>& allTensors) {
vector<Op*> oplists;
for (int i = begin; i < end; ++i) {
auto op = net->oplists()->GetAs<Op>(i);
if (op->type() == OpType_Input || !_validateOp(op)) {
continue;
}
oplists.emplace_back(const_cast<Op*>(op));
}
return oplists;
}
static vector<vector<Op*>> generateSchedulePath(const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
vector<vector<Op*>> oplists;
vector<string> inputs(configs.path.inputs);
vector<string> outputs(configs.path.outputs);
auto maxSize = std::max(inputs.size(), outputs.size());
inputs.resize(maxSize);
outputs.resize(maxSize);
for (int i = 0; i < inputs.size(); i++) {
string in = inputs[i];
string out = outputs[i];
int start = 0;
int end = net->oplists()->size();
if (in.length() > 0) {
auto pos = _findOpPosition(in, net);
if (-1 == pos) {
MNN_PRINT("Can't find %s op as start op\n", in.c_str());
} else {
start = pos;
}
}
if (out.length() > 0) {
auto pos = _findOpPosition(out, net);
if (-1 == pos) {
MNN_PRINT("Can't find %s op as end op\n", out.c_str());
} else {
end = pos + 1;
}
}
if (start > end) {
MNN_PRINT("op order incorrect end op '%s' before begin op '%s',please check!\n", out.c_str(), in.c_str());
} else {
vector<Op*> path = generateOneSchedulePath(net, start, end, allTensors);
oplists.emplace_back(path);
}
}
return oplists;
}
static void generateScheduleGraph(vector<const Op*>& ops, const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
if (configs.path.inputs.empty() && configs.path.outputs.empty()) {
// Use Default Linear schedule
ops.clear();
ops.reserve(net->oplists()->size());
for (int i = 0; i < net->oplists()->size(); ++i) {
auto op = net->oplists()->GetAs<Op>(i);
if (op->type() != OpType_Input) {
ops.emplace_back(op);
}
}
return;
}
vector<vector<Op*>> paths = generateSchedulePath(net, configs, allTensors);
unique_ptr<DirectedAcyclicGraph<Op*>> graph(new DirectedAcyclicGraph<Op*>());
// add Node
unordered_map<Op*, shared_ptr<Node<Op*>>> opMaps;
for (vector<Op*> path : paths) {
for (Op* op : path) {
if (opMaps.find(op) == opMaps.end()) {
OpNodeDef def(op);
shared_ptr<Node<Op*>> n = graph->AddNode(def);
opMaps.insert(make_pair(op, n));
}
}
}
// add edges
for (vector<Op*> path : paths) {
shared_ptr<Node<Op*>> pre = nullptr;
for (Op* op : path) {
shared_ptr<Node<Op*>> n = opMaps[op];
if (nullptr == pre) {
pre = n;
} else {
graph->AddEdge(pre, n);
pre = n;
}
}
}
ops.clear();
vector<shared_ptr<Node<Op*>>> order;
if (graph->GetPostOrder(order)) {
for (shared_ptr<Node<Op*>> n : order) {
ops.emplace_back(n->getData());
}
} else {
MNN_PRINT("op graph have cycle,schedule failed\n");
}
}
static vector<Schedule::PipelineInfo> _scheduleUnit(const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
vector<Schedule::PipelineInfo> oplists;
vector<const Op*> ops;
generateScheduleGraph(ops, net, configs, allTensors);
for (const Op* op : ops) {
Schedule::PipelineInfo opInfo;
opInfo.op = op;
if (nullptr != op->outputIndexes()) {
auto data = op->outputIndexes()->data();
for (int j = 0; j < op->outputIndexes()->size(); ++j) {
opInfo.outputs.push_back(allTensors[data[j]].get());
}
}
if (nullptr != op->inputIndexes()) {
auto data = op->inputIndexes()->data();
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
opInfo.inputs.push_back(allTensors[data[j]].get());
}
}
oplists.emplace_back(opInfo);
}
return oplists;
}
Schedule::ScheduleInfo Schedule::schedule(const Net* net, const std::vector<ScheduleConfig>& configs) {
std::vector<std::shared_ptr<Tensor>> allTensors;
ScheduleInfo schedule;
if (nullptr == net->oplists()) {
MNN_PRINT("Error net for schedule\n");
return schedule;
}
bool valid = _setUpTensorInfo(allTensors, net);
schedule.validForResize = valid;
std::vector<std::pair<Backend::Info, std::vector<PipelineInfo>>> result;
for (auto& config : configs) {
Backend::Info compute;
compute.type = _getApprociateType(config, net, allTensors, valid);
compute.numThread = config.numThread;
compute.user = config.backendConfig;
auto oplists = _scheduleUnit(net, config, allTensors);
result.emplace_back(std::make_pair(compute, std::move(oplists)));
}
schedule.pipelineInfo = std::move(result);
// get all used op's output, drop unused op, won't change op order. always insert all Input Ops
std::set<const Op*> oplists;
{
for (std::pair<Backend::Info, vector<PipelineInfo>>& pipeline : schedule.pipelineInfo) {
for (auto& info : pipeline.second) {
oplists.insert(info.op);
}
}
}
std::set<int> outputIndexes;
std::set<int> inputIndexes;
for (auto op : oplists) {
if (nullptr != op->outputIndexes()) {
auto data = op->outputIndexes()->data();
for (int j = 0; j < op->outputIndexes()->size(); ++j) {
outputIndexes.insert(data[j]);
}
}
if (nullptr != op->inputIndexes()) {
auto data = op->inputIndexes()->data();
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
inputIndexes.insert(data[j]);
}
}
MNN_ASSERT(OpType_Input != op->type());
}
// Get All Output and Input
std::set<int> inputIndexDiff;
std::set<int> outputIndexesDiff;
std::set_difference(outputIndexes.begin(), outputIndexes.end(), inputIndexes.begin(), inputIndexes.end(),
std::inserter(outputIndexesDiff, outputIndexesDiff.begin()));
std::set_difference(inputIndexes.begin(), inputIndexes.end(), outputIndexes.begin(), outputIndexes.end(),
std::inserter(inputIndexDiff, inputIndexDiff.begin()));
std::unordered_map<std::string, int> tensorNameIndexMap;
for (int i = 0; i < net->tensorName()->size(); ++i) {
tensorNameIndexMap[net->tensorName()->Get(i)->str()] = i;
}
for (auto& config : configs) {
for (const auto& name : config.saveTensors) {
if (tensorNameIndexMap.count(name)) {
outputIndexesDiff.insert(tensorNameIndexMap[name]);
} else {
MNN_PRINT("Bad outputname: %s\n", name.c_str());
}
}
}
if (net->outputName()) {
for (int i = 0; i < net->outputName()->size(); ++i) {
std::string name = net->outputName()->Get(i)->str();
if (tensorNameIndexMap.count(name)) {
outputIndexesDiff.insert(tensorNameIndexMap[name]);
}
}
}
for (auto index : inputIndexDiff) {
schedule.inputTensors.insert(
std::make_pair(net->tensorName()->GetAsString(index)->c_str(), allTensors[index].get()));
TensorUtils::getDescribe(allTensors[index].get())->usage = TensorUsage::INPUT;
}
for (auto index : outputIndexesDiff) {
schedule.outputTensor.insert(
std::make_pair(net->tensorName()->GetAsString(index)->c_str(), allTensors[index].get()));
}
for (auto& t : allTensors) {
schedule.allTensors.emplace_back(std::make_pair(0, std::move(t)));
}
for (int i = 0; i < net->oplists()->size(); ++i) {
auto op = net->oplists()->GetAs<Op>(i);
if (nullptr != op->inputIndexes()) {
auto data = op->inputIndexes()->data();
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
auto index = data[j];
schedule.allTensors[index].first += 1;
}
}
}
for (auto outputIndex : outputIndexesDiff) {
TensorUtils::getDescribe(schedule.allTensors[outputIndex].second.get())->usage = TensorUsage::OUTPUT;
schedule.allTensors[outputIndex].first += 1;
}
return schedule;
}
} // namespace MNN