mirror of https://github.com/alibaba/MNN.git
137 lines
4.1 KiB
C++
137 lines
4.1 KiB
C++
//
|
|
// mobilenetV1Test.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/05/14.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <stdio.h>
|
|
#include <MNN/ImageProcess.hpp>
|
|
#include <MNN/Interpreter.hpp>
|
|
#define MNN_OPEN_TIME_TRACE
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <vector>
|
|
#include <MNN/AutoTime.hpp>
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "stb_image.h"
|
|
#include "stb_image_write.h"
|
|
|
|
using namespace MNN;
|
|
using namespace MNN::CV;
|
|
|
|
int main(int argc, const char* argv[]) {
|
|
|
|
if (argc < 3) {
|
|
MNN_PRINT("Usage: ./mobilenetTest.out model.mnn input.jpg [word.txt]\n");
|
|
return 0;
|
|
}
|
|
std::shared_ptr<Interpreter> net(Interpreter::createFromFile(argv[1]));
|
|
ScheduleConfig config;
|
|
config.type = MNN_FORWARD_CPU;
|
|
config.numThread = 4;
|
|
if (argc >= 4) {
|
|
config.type = (MNNForwardType)::atoi(argv[4]);
|
|
}
|
|
|
|
Session* session = net->createSession(config);
|
|
|
|
Tensor* inputTensor = net->getSessionInput(session, NULL);
|
|
Tensor* outputTensor = net->getSessionOutput(session, NULL);
|
|
|
|
Tensor inputTensorUser(inputTensor, Tensor::DimensionType::TENSORFLOW);
|
|
Tensor outputTensorUser(outputTensor, outputTensor->getDimensionType());
|
|
|
|
//image preproccess
|
|
{
|
|
int netInputHeight = inputTensorUser.height();
|
|
int netInputWidth = inputTensorUser.width();
|
|
|
|
int imageChannel, imageWidth, imageHeight;
|
|
unsigned char* inputImage = stbi_load(argv[2], &imageWidth,
|
|
&imageHeight, &imageChannel, 4);
|
|
|
|
Matrix trans;
|
|
trans.setScale(1.0 / imageWidth, 1.0 / imageHeight);
|
|
trans.postRotate(0, 0.5f, 0.5f);
|
|
trans.postScale(netInputWidth, netInputHeight);
|
|
trans.invert(&trans);
|
|
|
|
ImageProcess::Config config;
|
|
config.filterType = BILINEAR;
|
|
float mean[3] = {103.94f, 116.78f, 123.68f};
|
|
float normals[3] = {0.017f, 0.017f, 0.017f};
|
|
::memcpy(config.mean, mean, sizeof(mean));
|
|
::memcpy(config.normal, normals, sizeof(normals));
|
|
config.sourceFormat = RGBA;
|
|
config.destFormat = RGB;
|
|
|
|
std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(config));
|
|
pretreat->setMatrix(trans);
|
|
pretreat->convert(inputImage, imageWidth, imageHeight, 0, &inputTensorUser);
|
|
|
|
stbi_image_free(inputImage);
|
|
}
|
|
|
|
//run
|
|
{
|
|
AUTOTIME;
|
|
inputTensor->copyFromHostTensor(&inputTensorUser);
|
|
net->runSession(session);
|
|
outputTensor->copyToHostTensor(&outputTensorUser);
|
|
}
|
|
|
|
|
|
//get predict labels
|
|
{
|
|
|
|
std::vector<std::string> words;
|
|
if (argc >= 4) {
|
|
std::ifstream inputOs(argv[3]);
|
|
std::string line;
|
|
while (std::getline(inputOs, line)) {
|
|
words.emplace_back(line);
|
|
}
|
|
}
|
|
|
|
MNN_PRINT("output size:%d\n", outputTensorUser.elementSize());
|
|
auto type = outputTensorUser.getType();
|
|
|
|
auto size = outputTensorUser.elementSize();
|
|
std::vector<std::pair<int, float>> tempValues(size);
|
|
if (type.code == halide_type_float) {
|
|
auto values = outputTensorUser.host<float>();
|
|
for (int i = 0; i < size; ++i) {
|
|
tempValues[i] = std::make_pair(i, values[i]);
|
|
}
|
|
}
|
|
if (type.code == halide_type_uint && type.bytes() == 1) {
|
|
auto values = outputTensorUser.host<uint8_t>();
|
|
for (int i = 0; i < size; ++i) {
|
|
tempValues[i] = std::make_pair(i, values[i]);
|
|
}
|
|
}
|
|
// Find Max
|
|
std::sort(tempValues.begin(), tempValues.end(),
|
|
[](std::pair<int, float> a, std::pair<int, float> b) { return a.second > b.second; });
|
|
|
|
int length = size > 10 ? 10 : size;
|
|
if (words.empty()) {
|
|
for (int i = 0; i < length; ++i) {
|
|
MNN_PRINT("%d, %f\n", tempValues[i].first, tempValues[i].second);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < length; ++i) {
|
|
MNN_PRINT("%s: %f\n", words[tempValues[i].first].c_str(), tempValues[i].second);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|