mirror of https://github.com/alibaba/MNN.git
240 lines
7.1 KiB
C++
240 lines
7.1 KiB
C++
//
|
|
// testModelWithDescrisbe.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/22.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#define MNN_OPEN_TIME_TRACE
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <sstream>
|
|
#include <MNN/AutoTime.hpp>
|
|
#include "core/Backend.hpp"
|
|
#include "Config.hpp"
|
|
#include <MNN/Interpreter.hpp>
|
|
#include <MNN/MNNDefine.h>
|
|
#include "core/Macro.h"
|
|
#include <MNN/Tensor.hpp>
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
#define NONE "\e[0m"
|
|
#define RED "\e[0;31m"
|
|
#define GREEN "\e[0;32m"
|
|
#define L_GREEN "\e[1;32m"
|
|
#define BLUE "\e[0;34m"
|
|
#define L_BLUE "\e[1;34m"
|
|
#define BOLD "\e[1m"
|
|
|
|
template<typename T>
|
|
inline T stringConvert(const char* number) {
|
|
std::istringstream os(number);
|
|
T v;
|
|
os >> v;
|
|
return v;
|
|
}
|
|
|
|
std::vector<std::string> splitNames(const int size, const std::string names) {
|
|
std::vector<std::string> split(size);
|
|
std::string rest = names;
|
|
for (int i = 0; i < size; ++i) {
|
|
auto position = rest.find(",");
|
|
split[i] = rest.substr(0, position);
|
|
rest = rest.substr(position + 1, rest.size());
|
|
}
|
|
return split;
|
|
}
|
|
|
|
std::vector<int> stringToDims(const std::string& str, const std::string& pattern) {
|
|
std::vector<int> res;
|
|
if (str == "") {
|
|
return res;
|
|
}
|
|
std::string strs = str + pattern;
|
|
size_t pos = strs.find(pattern);
|
|
|
|
while (pos != strs.npos) {
|
|
std::string temp = strs.substr(0, pos);
|
|
std::istringstream tempIs(temp);
|
|
int p;
|
|
tempIs >> p;
|
|
res.push_back(p);
|
|
strs = strs.substr(pos + 1, strs.size());
|
|
pos = strs.find(pattern);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
std::vector<std::vector<int>> splitDims(const int size, const std::string string) {
|
|
std::vector<std::vector<int>> dims(size);
|
|
std::string rest = string;
|
|
for (int i = 0; i < size; ++i) {
|
|
auto position = rest.find(",");
|
|
dims[i] = stringToDims(rest.substr(0, position), "x");
|
|
rest = rest.substr(position + 1, rest.size());
|
|
}
|
|
return dims;
|
|
}
|
|
|
|
MNN::Tensor* createTensor(const MNN::Tensor* shape, const std::string path) {
|
|
std::ifstream stream(path.c_str());
|
|
if (stream.fail()) {
|
|
return NULL;
|
|
}
|
|
|
|
auto result = new MNN::Tensor(shape, shape->getDimensionType());
|
|
result->buffer().type = shape->buffer().type;
|
|
switch (result->getType().code) {
|
|
case halide_type_float: {
|
|
auto data = result->host<float>();
|
|
for (int i = 0; i < result->elementSize(); ++i) {
|
|
double temp = 0.0f;
|
|
stream >> temp;
|
|
data[i] = temp;
|
|
}
|
|
} break;
|
|
case halide_type_int: {
|
|
MNN_ASSERT(result->getType().bits == 32);
|
|
auto data = result->host<int>();
|
|
for (int i = 0; i < result->elementSize(); ++i) {
|
|
int temp = 0;
|
|
stream >> temp;
|
|
data[i] = temp;
|
|
}
|
|
} break;
|
|
case halide_type_uint: {
|
|
MNN_ASSERT(result->getType().bits == 8);
|
|
auto data = result->host<uint8_t>();
|
|
for (int i = 0; i < result->elementSize(); ++i) {
|
|
int temp = 0;
|
|
stream >> temp;
|
|
data[i] = temp;
|
|
}
|
|
} break;
|
|
default: {
|
|
stream.close();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
stream.close();
|
|
return result;
|
|
}
|
|
|
|
int main(int argc, const char* argv[]) {
|
|
// modelName is xxx/xxx/temp.bin ===> xxx/xxx is the root path
|
|
const char* modelName = argv[1];
|
|
std::string modelDir = modelName;
|
|
modelDir = modelDir.substr(0, modelDir.find("temp.bin"));
|
|
std::cout << "model dir: " << modelDir << std::endl;
|
|
|
|
// read args
|
|
auto type = MNN_FORWARD_CPU;
|
|
if (argc > 3) {
|
|
type = (MNNForwardType)stringConvert<int>(argv[3]);
|
|
}
|
|
auto tolerance = 0.1f;
|
|
if (argc > 4) {
|
|
tolerance = stringConvert<float>(argv[4]);
|
|
}
|
|
|
|
// input config
|
|
Config config(argv[2]);
|
|
auto numOfInputs = config.Read<int>("input_size");
|
|
auto numOfOuputs = config.Read<int>("output_size");
|
|
auto inputNames = splitNames(numOfInputs, config.Read<std::string>("input_names"));
|
|
auto inputDims = splitDims(numOfInputs, config.Read<std::string>("input_dims"));
|
|
auto expectNames = splitNames(numOfOuputs, config.Read<std::string>("output_names"));
|
|
|
|
// create net & session
|
|
#if defined(_MSC_VER)
|
|
MNN_PRINT("Testing Model ====> %s\n", modelName);
|
|
#else
|
|
MNN_PRINT(GREEN "Testing Model ====> %s\n" NONE, modelName);
|
|
#endif
|
|
auto net = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(modelName));
|
|
MNN::ScheduleConfig schedule;
|
|
schedule.type = type;
|
|
MNN::BackendConfig backendConfig;
|
|
if (type != MNN_FORWARD_CPU) {
|
|
// Use Precision_High for other backend
|
|
// Test CPU ARM v8.2 and other approciate method
|
|
backendConfig.precision = MNN::BackendConfig::Precision_High;
|
|
}
|
|
schedule.backendConfig = &backendConfig;
|
|
|
|
auto session = net->createSession(schedule);
|
|
|
|
// resize
|
|
for (int i = 0; i < numOfInputs; ++i) {
|
|
auto inputTensor = net->getSessionInput(session, inputNames[i].c_str());
|
|
net->resizeTensor(inputTensor, inputDims[i]);
|
|
}
|
|
net->resizeSession(session);
|
|
|
|
// [second] set input-tensor data
|
|
for (int i = 0; i < numOfInputs; ++i) {
|
|
auto inputTensor = net->getSessionInput(session, inputNames[i].c_str());
|
|
auto inputName = modelDir + inputNames[i] + ".txt";
|
|
std::cout << "The " << i << " input: " << inputName << std::endl;
|
|
|
|
auto givenTensor = createTensor(inputTensor, inputName);
|
|
if (!givenTensor) {
|
|
#if defined(_MSC_VER)
|
|
std::cout << "Failed to open " << inputName << std::endl;
|
|
#else
|
|
std::cout << RED << "Failed to open " << inputName << NONE << std::endl;
|
|
#endif
|
|
break;
|
|
}
|
|
for (int j = 0; j < inputDims.size(); j++) {
|
|
MNN_ASSERT(inputDims[i][j] == givenTensor->length(j));
|
|
}
|
|
inputTensor->copyFromHostTensor(givenTensor);
|
|
delete givenTensor;
|
|
}
|
|
|
|
// inference
|
|
net->runSession(session);
|
|
|
|
// get ouput-tensor and compare data
|
|
bool correct = true;
|
|
for (int i = 0; i < numOfOuputs; ++i) {
|
|
auto outputTensor = net->getSessionOutput(session, expectNames[i].c_str());
|
|
std::ostringstream iStrOs;
|
|
iStrOs << i;
|
|
auto expectName = modelDir + iStrOs.str() + ".txt";
|
|
auto expectTensor = createTensor(outputTensor, expectName);
|
|
if (!expectTensor) {
|
|
#if defined(_MSC_VER)
|
|
std::cout << "Failed to open " << expectName << std::endl;
|
|
#else
|
|
std::cout << RED << "Failed to open " << expectName << NONE << std::endl;
|
|
#endif
|
|
break;
|
|
}
|
|
if (!MNN::TensorUtils::compareTensors(outputTensor, expectTensor, tolerance, true)) {
|
|
correct = false;
|
|
break;
|
|
}
|
|
delete expectTensor;
|
|
}
|
|
|
|
if (correct) {
|
|
#if defined(_MSC_VER)
|
|
std::cout << "Correct!" << std::endl;
|
|
#else
|
|
std::cout << GREEN << BOLD << "Correct!" << NONE << std::endl;
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|